1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use std::mem::size_of_val;

const ARR_SIZE: usize = 128;

struct ExecuteResults {
    patient_workgroup_results: Vec<u32>,
    #[cfg_attr(test, allow(unused))]
    hasty_workgroup_results: Vec<u32>,
}

#[cfg_attr(test, allow(unused))]
async fn run() {
    let instance = wgpu::Instance::default();
    let adapter = instance
        .request_adapter(&wgpu::RequestAdapterOptions::default())
        .await
        .unwrap();
    let (device, queue) = adapter
        .request_device(
            &wgpu::DeviceDescriptor {
                label: None,
                required_features: wgpu::Features::empty(),
                required_limits: wgpu::Limits::downlevel_defaults(),
                memory_hints: wgpu::MemoryHints::Performance,
            },
            None,
        )
        .await
        .unwrap();

    let ExecuteResults {
        patient_workgroup_results,
        hasty_workgroup_results,
    } = execute(&device, &queue, ARR_SIZE).await;

    // Print data
    log::info!("Patient results: {:?}", patient_workgroup_results);
    if !patient_workgroup_results.iter().any(|e| *e != 16) {
        log::info!("patient_main was patient.");
    } else {
        log::error!("patient_main was not patient!");
    }
    log::info!("Hasty results: {:?}", hasty_workgroup_results);
    if hasty_workgroup_results.iter().any(|e| *e != 16) {
        log::info!("hasty_main was not patient.");
    } else {
        log::info!("hasty_main got lucky.");
    }
}

async fn execute(
    device: &wgpu::Device,
    queue: &wgpu::Queue,
    result_vec_size: usize,
) -> ExecuteResults {
    let mut local_patient_workgroup_results = vec![0u32; result_vec_size];
    let mut local_hasty_workgroup_results = local_patient_workgroup_results.clone();

    let shaders_module = device.create_shader_module(wgpu::include_wgsl!("shaders.wgsl"));

    let storage_buffer = device.create_buffer(&wgpu::BufferDescriptor {
        label: None,
        size: size_of_val(local_patient_workgroup_results.as_slice()) as u64,
        usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_SRC,
        mapped_at_creation: false,
    });
    let output_staging_buffer = device.create_buffer(&wgpu::BufferDescriptor {
        label: None,
        size: size_of_val(local_patient_workgroup_results.as_slice()) as u64,
        usage: wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::MAP_READ,
        mapped_at_creation: false,
    });

    let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
        label: None,
        entries: &[wgpu::BindGroupLayoutEntry {
            binding: 0,
            visibility: wgpu::ShaderStages::COMPUTE,
            ty: wgpu::BindingType::Buffer {
                ty: wgpu::BufferBindingType::Storage { read_only: false },
                has_dynamic_offset: false,
                min_binding_size: None,
            },
            count: None,
        }],
    });
    let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
        label: None,
        layout: &bind_group_layout,
        entries: &[wgpu::BindGroupEntry {
            binding: 0,
            resource: storage_buffer.as_entire_binding(),
        }],
    });

    let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
        label: None,
        bind_group_layouts: &[&bind_group_layout],
        push_constant_ranges: &[],
    });
    let patient_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
        label: None,
        layout: Some(&pipeline_layout),
        module: &shaders_module,
        entry_point: Some("patient_main"),
        compilation_options: Default::default(),
        cache: None,
    });
    let hasty_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
        label: None,
        layout: Some(&pipeline_layout),
        module: &shaders_module,
        entry_point: Some("hasty_main"),
        compilation_options: Default::default(),
        cache: None,
    });

    //----------------------------------------------------------

    let mut command_encoder =
        device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
    {
        let mut compute_pass = command_encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
            label: None,
            timestamp_writes: None,
        });
        compute_pass.set_pipeline(&patient_pipeline);
        compute_pass.set_bind_group(0, &bind_group, &[]);
        compute_pass.dispatch_workgroups(local_patient_workgroup_results.len() as u32, 1, 1);
    }
    queue.submit(Some(command_encoder.finish()));

    get_data(
        local_patient_workgroup_results.as_mut_slice(),
        &storage_buffer,
        &output_staging_buffer,
        device,
        queue,
    )
    .await;

    let mut command_encoder =
        device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
    {
        let mut compute_pass = command_encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
            label: None,
            timestamp_writes: None,
        });
        compute_pass.set_pipeline(&hasty_pipeline);
        compute_pass.set_bind_group(0, &bind_group, &[]);
        compute_pass.dispatch_workgroups(local_patient_workgroup_results.len() as u32, 1, 1);
    }
    queue.submit(Some(command_encoder.finish()));

    get_data(
        local_hasty_workgroup_results.as_mut_slice(),
        &storage_buffer,
        &output_staging_buffer,
        device,
        queue,
    )
    .await;

    ExecuteResults {
        patient_workgroup_results: local_patient_workgroup_results,
        hasty_workgroup_results: local_hasty_workgroup_results,
    }
}

async fn get_data<T: bytemuck::Pod>(
    output: &mut [T],
    storage_buffer: &wgpu::Buffer,
    staging_buffer: &wgpu::Buffer,
    device: &wgpu::Device,
    queue: &wgpu::Queue,
) {
    let mut command_encoder =
        device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
    command_encoder.copy_buffer_to_buffer(
        storage_buffer,
        0,
        staging_buffer,
        0,
        size_of_val(output) as u64,
    );
    queue.submit(Some(command_encoder.finish()));
    let buffer_slice = staging_buffer.slice(..);
    let (sender, receiver) = flume::bounded(1);
    buffer_slice.map_async(wgpu::MapMode::Read, move |r| sender.send(r).unwrap());
    device.poll(wgpu::Maintain::wait()).panic_on_timeout();
    receiver.recv_async().await.unwrap().unwrap();
    output.copy_from_slice(bytemuck::cast_slice(&buffer_slice.get_mapped_range()[..]));
    staging_buffer.unmap();
}

pub fn main() {
    #[cfg(not(target_arch = "wasm32"))]
    {
        env_logger::builder()
            .filter_level(log::LevelFilter::Info)
            .format_timestamp_nanos()
            .init();
        pollster::block_on(run());
    }
    #[cfg(target_arch = "wasm32")]
    {
        std::panic::set_hook(Box::new(console_error_panic_hook::hook));
        console_log::init_with_level(log::Level::Info).expect("could not initialize logger");

        crate::utils::add_web_nothing_to_see_msg();

        wasm_bindgen_futures::spawn_local(run());
    }
}

#[cfg(test)]
mod tests;