naga/ir/mod.rs
1/*!
2The Intermediate Representation shared by all frontends and backends.
3
4The central structure of the IR, and the crate, is [`Module`]. A `Module` contains:
5
6- [`Function`]s, which have arguments, a return type, local variables, and a body,
7
8- [`EntryPoint`]s, which are specialized functions that can serve as the entry
9 point for pipeline stages like vertex shading or fragment shading,
10
11- [`Constant`]s and [`GlobalVariable`]s used by `EntryPoint`s and `Function`s, and
12
13- [`Type`]s used by the above.
14
15The body of an `EntryPoint` or `Function` is represented using two types:
16
17- An [`Expression`] produces a value, but has no side effects or control flow.
18 `Expressions` include variable references, unary and binary operators, and so
19 on.
20
21- A [`Statement`] can have side effects and structured control flow.
22 `Statement`s do not produce a value, other than by storing one in some
23 designated place. `Statements` include blocks, conditionals, and loops, but also
24 operations that have side effects, like stores and function calls.
25
26`Statement`s form a tree, with pointers into the DAG of `Expression`s.
27
28Restricting side effects to statements simplifies analysis and code generation.
29A Naga backend can generate code to evaluate an `Expression` however and
30whenever it pleases, as long as it is certain to observe the side effects of all
31previously executed `Statement`s.
32
33Many `Statement` variants use the [`Block`] type, which is `Vec<Statement>`,
34with optional span info, representing a series of statements executed in order. The body of an
35`EntryPoint`s or `Function` is a `Block`, and `Statement` has a
36[`Block`][Statement::Block] variant.
37
38## Function Calls
39
40Naga's representation of function calls is unusual. Most languages treat
41function calls as expressions, but because calls may have side effects, Naga
42represents them as a kind of statement, [`Statement::Call`]. If the function
43returns a value, a call statement designates a particular [`Expression::CallResult`]
44expression to represent its return value, for use by subsequent statements and
45expressions.
46
47## `Expression` evaluation time
48
49It is essential to know when an [`Expression`] should be evaluated, because its
50value may depend on previous [`Statement`]s' effects. But whereas the order of
51execution for a tree of `Statement`s is apparent from its structure, it is not
52so clear for `Expressions`, since an expression may be referred to by any number
53of `Statement`s and other `Expression`s.
54
55Naga's rules for when `Expression`s are evaluated are as follows:
56
57- [`Literal`], [`Constant`], and [`ZeroValue`] expressions are
58 considered to be implicitly evaluated before execution begins.
59
60- [`FunctionArgument`] and [`LocalVariable`] expressions are considered
61 implicitly evaluated upon entry to the function to which they belong.
62 Function arguments cannot be assigned to, and `LocalVariable` expressions
63 produce a *pointer to* the variable's value (for use with [`Load`] and
64 [`Store`]). Neither varies while the function executes, so it suffices to
65 consider these expressions evaluated once on entry.
66
67- Similarly, [`GlobalVariable`] expressions are considered implicitly
68 evaluated before execution begins, since their value does not change while
69 code executes, for one of two reasons:
70
71 - Most `GlobalVariable` expressions produce a pointer to the variable's
72 value, for use with [`Load`] and [`Store`], as `LocalVariable`
73 expressions do. Although the variable's value may change, its address
74 does not.
75
76 - A `GlobalVariable` expression referring to a global in the
77 [`AddressSpace::Handle`] address space produces the value directly, not
78 a pointer. Such global variables hold opaque types like shaders or
79 images, and cannot be assigned to.
80
81- A [`CallResult`] expression that is the `result` of a [`Statement::Call`],
82 representing the call's return value, is evaluated when the `Call` statement
83 is executed.
84
85- Similarly, an [`AtomicResult`] expression that is the `result` of an
86 [`Atomic`] statement, representing the result of the atomic operation, is
87 evaluated when the `Atomic` statement is executed.
88
89- A [`RayQueryProceedResult`] expression, which is a boolean
90 indicating if the ray query is finished, is evaluated when the
91 [`RayQuery`] statement whose [`Proceed::result`] points to it is
92 executed.
93
94- All other expressions are evaluated when the (unique) [`Statement::Emit`]
95 statement that covers them is executed.
96
97Now, strictly speaking, not all `Expression` variants actually care when they're
98evaluated. For example, you can evaluate a [`BinaryOperator::Add`] expression
99any time you like, as long as you give it the right operands. It's really only a
100very small set of expressions that are affected by timing:
101
102- [`Load`], [`ImageSample`], and [`ImageLoad`] expressions are influenced by
103 stores to the variables or images they access, and must execute at the
104 proper time relative to them.
105
106- [`Derivative`] expressions are sensitive to control flow uniformity: they
107 must not be moved out of an area of uniform control flow into a non-uniform
108 area.
109
110- More generally, any expression that's used by more than one other expression
111 or statement should probably be evaluated only once, and then stored in a
112 variable to be cited at each point of use.
113
114Naga tries to help back ends handle all these cases correctly in a somewhat
115circuitous way. The [`ModuleInfo`] structure returned by [`Validator::validate`]
116provides a reference count for each expression in each function in the module.
117Naturally, any expression with a reference count of two or more deserves to be
118evaluated and stored in a temporary variable at the point that the `Emit`
119statement covering it is executed. But if we selectively lower the reference
120count threshold to _one_ for the sensitive expression types listed above, so
121that we _always_ generate a temporary variable and save their value, then the
122same code that manages multiply referenced expressions will take care of
123introducing temporaries for time-sensitive expressions as well. The
124`Expression::bake_ref_count` method (private to the back ends) is meant to help
125with this.
126
127## `Expression` scope
128
129Each `Expression` has a *scope*, which is the region of the function within
130which it can be used by `Statement`s and other `Expression`s. It is a validation
131error to use an `Expression` outside its scope.
132
133An expression's scope is defined as follows:
134
135- The scope of a [`Constant`], [`GlobalVariable`], [`FunctionArgument`] or
136 [`LocalVariable`] expression covers the entire `Function` in which it
137 occurs.
138
139- The scope of an expression evaluated by an [`Emit`] statement covers the
140 subsequent expressions in that `Emit`, the subsequent statements in the `Block`
141 to which that `Emit` belongs (if any) and their sub-statements (if any).
142
143- The `result` expression of a [`Call`] or [`Atomic`] statement has a scope
144 covering the subsequent statements in the `Block` in which the statement
145 occurs (if any) and their sub-statements (if any).
146
147For example, this implies that an expression evaluated by some statement in a
148nested `Block` is not available in the `Block`'s parents. Such a value would
149need to be stored in a local variable to be carried upwards in the statement
150tree.
151
152## Constant expressions
153
154A Naga *constant expression* is one of the following [`Expression`]
155variants, whose operands (if any) are also constant expressions:
156- [`Literal`]
157- [`Constant`], for [`Constant`]s
158- [`ZeroValue`], for fixed-size types
159- [`Compose`]
160- [`Access`]
161- [`AccessIndex`]
162- [`Splat`]
163- [`Swizzle`]
164- [`Unary`]
165- [`Binary`]
166- [`Select`]
167- [`Relational`]
168- [`Math`]
169- [`As`]
170
171A constant expression can be evaluated at module translation time.
172
173## Override expressions
174
175A Naga *override expression* is the same as a [constant expression],
176except that it is also allowed to reference other [`Override`]s.
177
178An override expression can be evaluated at pipeline creation time.
179
180[`AtomicResult`]: Expression::AtomicResult
181[`RayQueryProceedResult`]: Expression::RayQueryProceedResult
182[`CallResult`]: Expression::CallResult
183[`Constant`]: Expression::Constant
184[`ZeroValue`]: Expression::ZeroValue
185[`Literal`]: Expression::Literal
186[`Derivative`]: Expression::Derivative
187[`FunctionArgument`]: Expression::FunctionArgument
188[`GlobalVariable`]: Expression::GlobalVariable
189[`ImageLoad`]: Expression::ImageLoad
190[`ImageSample`]: Expression::ImageSample
191[`Load`]: Expression::Load
192[`LocalVariable`]: Expression::LocalVariable
193
194[`Atomic`]: Statement::Atomic
195[`Call`]: Statement::Call
196[`Emit`]: Statement::Emit
197[`Store`]: Statement::Store
198[`RayQuery`]: Statement::RayQuery
199
200[`Proceed::result`]: RayQueryFunction::Proceed::result
201
202[`Validator::validate`]: crate::valid::Validator::validate
203[`ModuleInfo`]: crate::valid::ModuleInfo
204
205[`Literal`]: Expression::Literal
206[`ZeroValue`]: Expression::ZeroValue
207[`Compose`]: Expression::Compose
208[`Access`]: Expression::Access
209[`AccessIndex`]: Expression::AccessIndex
210[`Splat`]: Expression::Splat
211[`Swizzle`]: Expression::Swizzle
212[`Unary`]: Expression::Unary
213[`Binary`]: Expression::Binary
214[`Select`]: Expression::Select
215[`Relational`]: Expression::Relational
216[`Math`]: Expression::Math
217[`As`]: Expression::As
218
219[constant expression]: #constant-expressions
220*/
221
222mod block;
223
224use alloc::{boxed::Box, string::String, vec::Vec};
225
226#[cfg(feature = "arbitrary")]
227use arbitrary::Arbitrary;
228use half::f16;
229#[cfg(feature = "deserialize")]
230use serde::Deserialize;
231#[cfg(feature = "serialize")]
232use serde::Serialize;
233
234use crate::arena::{Arena, Handle, Range, UniqueArena};
235use crate::diagnostic_filter::DiagnosticFilterNode;
236use crate::{FastIndexMap, NamedExpressions};
237
238pub use block::Block;
239
240/// Explicitly allows early depth/stencil tests.
241///
242/// Normally, depth/stencil tests are performed after fragment shading. However, as an optimization,
243/// most drivers will move the depth/stencil tests before fragment shading if this does not
244/// have any observable consequences. This optimization is disabled under the following
245/// circumstances:
246/// - `discard` is called in the fragment shader.
247/// - The fragment shader writes to the depth buffer.
248/// - The fragment shader writes to any storage bindings.
249///
250/// When `EarlyDepthTest` is set, it is allowed to perform an early depth/stencil test even if the
251/// above conditions are not met. When [`EarlyDepthTest::Force`] is used, depth/stencil tests
252/// **must** be performed before fragment shading.
253///
254/// To force early depth/stencil tests in a shader:
255/// - GLSL: `layout(early_fragment_tests) in;`
256/// - HLSL: `Attribute earlydepthstencil`
257/// - SPIR-V: `ExecutionMode EarlyFragmentTests`
258/// - WGSL: `@early_depth_test(force)`
259///
260/// This may also be enabled in a shader by specifying a [`ConservativeDepth`].
261///
262/// For more, see:
263/// - <https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Explicit_specification>
264/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-earlydepthstencil>
265/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
266#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
267#[cfg_attr(feature = "serialize", derive(Serialize))]
268#[cfg_attr(feature = "deserialize", derive(Deserialize))]
269#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
270pub enum EarlyDepthTest {
271 /// Requires depth/stencil tests to be performed before fragment shading.
272 ///
273 /// This will disable depth/stencil tests after fragment shading, so discarding the fragment
274 /// or overwriting the fragment depth will have no effect.
275 Force,
276
277 /// Allows an additional depth/stencil test to be performed before fragment shading.
278 ///
279 /// It is up to the driver to decide whether early tests are performed. Unlike `Force`, this
280 /// does not disable depth/stencil tests after fragment shading.
281 Allow {
282 /// Specifies restrictions on how the depth value can be modified within the fragment
283 /// shader.
284 ///
285 /// This may be taken into account when deciding whether to perform early tests.
286 conservative: ConservativeDepth,
287 },
288}
289
290/// Enables adjusting depth without disabling early Z.
291///
292/// To use in a shader:
293/// - GLSL: `layout (depth_<greater/less/unchanged/any>) out float gl_FragDepth;`
294/// - `depth_any` option behaves as if the layout qualifier was not present.
295/// - HLSL: `SV_DepthGreaterEqual`/`SV_DepthLessEqual`/`SV_Depth`
296/// - SPIR-V: `ExecutionMode Depth<Greater/Less/Unchanged>`
297/// - WGSL: `@early_depth_test(greater_equal/less_equal/unchanged)`
298///
299/// For more, see:
300/// - <https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_conservative_depth.txt>
301/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-semantics#system-value-semantics>
302/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
303#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
304#[cfg_attr(feature = "serialize", derive(Serialize))]
305#[cfg_attr(feature = "deserialize", derive(Deserialize))]
306#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
307pub enum ConservativeDepth {
308 /// Shader may rewrite depth only with a value greater than calculated.
309 GreaterEqual,
310
311 /// Shader may rewrite depth smaller than one that would have been written without the modification.
312 LessEqual,
313
314 /// Shader may not rewrite depth value.
315 Unchanged,
316}
317
318/// Stage of the programmable pipeline.
319#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
320#[cfg_attr(feature = "serialize", derive(Serialize))]
321#[cfg_attr(feature = "deserialize", derive(Deserialize))]
322#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
323#[allow(missing_docs)] // The names are self evident
324pub enum ShaderStage {
325 Vertex,
326 Fragment,
327 Compute,
328 Task,
329 Mesh,
330}
331
332/// Addressing space of variables.
333#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
334#[cfg_attr(feature = "serialize", derive(Serialize))]
335#[cfg_attr(feature = "deserialize", derive(Deserialize))]
336#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
337pub enum AddressSpace {
338 /// Function locals.
339 Function,
340 /// Private data, per invocation, mutable.
341 Private,
342 /// Workgroup shared data, mutable.
343 WorkGroup,
344 /// Uniform buffer data.
345 Uniform,
346 /// Storage buffer data, potentially mutable.
347 Storage { access: StorageAccess },
348 /// Opaque handles, such as samplers and images.
349 Handle,
350 /// Push constants.
351 PushConstant,
352}
353
354/// Built-in inputs and outputs.
355#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
356#[cfg_attr(feature = "serialize", derive(Serialize))]
357#[cfg_attr(feature = "deserialize", derive(Deserialize))]
358#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
359pub enum BuiltIn {
360 Position { invariant: bool },
361 ViewIndex,
362 // vertex
363 BaseInstance,
364 BaseVertex,
365 ClipDistance,
366 CullDistance,
367 InstanceIndex,
368 PointSize,
369 VertexIndex,
370 DrawID,
371 // fragment
372 FragDepth,
373 PointCoord,
374 FrontFacing,
375 PrimitiveIndex,
376 SampleIndex,
377 SampleMask,
378 // compute
379 GlobalInvocationId,
380 LocalInvocationId,
381 LocalInvocationIndex,
382 WorkGroupId,
383 WorkGroupSize,
384 NumWorkGroups,
385 // subgroup
386 NumSubgroups,
387 SubgroupId,
388 SubgroupSize,
389 SubgroupInvocationId,
390}
391
392/// Number of bytes per scalar.
393pub type Bytes = u8;
394
395/// Number of components in a vector.
396#[repr(u8)]
397#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
398#[cfg_attr(feature = "serialize", derive(Serialize))]
399#[cfg_attr(feature = "deserialize", derive(Deserialize))]
400#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
401pub enum VectorSize {
402 /// 2D vector
403 Bi = 2,
404 /// 3D vector
405 Tri = 3,
406 /// 4D vector
407 Quad = 4,
408}
409
410impl VectorSize {
411 pub const MAX: usize = Self::Quad as usize;
412}
413
414impl From<VectorSize> for u8 {
415 fn from(size: VectorSize) -> u8 {
416 size as u8
417 }
418}
419
420impl From<VectorSize> for u32 {
421 fn from(size: VectorSize) -> u32 {
422 size as u32
423 }
424}
425
426/// Primitive type for a scalar.
427#[repr(u8)]
428#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
429#[cfg_attr(feature = "serialize", derive(Serialize))]
430#[cfg_attr(feature = "deserialize", derive(Deserialize))]
431#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
432pub enum ScalarKind {
433 /// Signed integer type.
434 Sint,
435 /// Unsigned integer type.
436 Uint,
437 /// Floating point type.
438 Float,
439 /// Boolean type.
440 Bool,
441
442 /// WGSL abstract integer type.
443 ///
444 /// These are forbidden by validation, and should never reach backends.
445 AbstractInt,
446
447 /// Abstract floating-point type.
448 ///
449 /// These are forbidden by validation, and should never reach backends.
450 AbstractFloat,
451}
452
453/// Characteristics of a scalar type.
454#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
455#[cfg_attr(feature = "serialize", derive(Serialize))]
456#[cfg_attr(feature = "deserialize", derive(Deserialize))]
457#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
458pub struct Scalar {
459 /// How the value's bits are to be interpreted.
460 pub kind: ScalarKind,
461
462 /// This size of the value in bytes.
463 pub width: Bytes,
464}
465
466/// Size of an array.
467#[repr(u8)]
468#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
469#[cfg_attr(feature = "serialize", derive(Serialize))]
470#[cfg_attr(feature = "deserialize", derive(Deserialize))]
471#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
472pub enum ArraySize {
473 /// The array size is constant.
474 Constant(core::num::NonZeroU32),
475 /// The array size is an override-expression.
476 Pending(Handle<Override>),
477 /// The array size can change at runtime.
478 Dynamic,
479}
480
481/// The interpolation qualifier of a binding or struct field.
482#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
483#[cfg_attr(feature = "serialize", derive(Serialize))]
484#[cfg_attr(feature = "deserialize", derive(Deserialize))]
485#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
486pub enum Interpolation {
487 /// The value will be interpolated in a perspective-correct fashion.
488 /// Also known as "smooth" in glsl.
489 Perspective,
490 /// Indicates that linear, non-perspective, correct
491 /// interpolation must be used.
492 /// Also known as "no_perspective" in glsl.
493 Linear,
494 /// Indicates that no interpolation will be performed.
495 Flat,
496}
497
498/// The sampling qualifiers of a binding or struct field.
499#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
500#[cfg_attr(feature = "serialize", derive(Serialize))]
501#[cfg_attr(feature = "deserialize", derive(Deserialize))]
502#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
503pub enum Sampling {
504 /// Interpolate the value at the center of the pixel.
505 Center,
506
507 /// Interpolate the value at a point that lies within all samples covered by
508 /// the fragment within the current primitive. In multisampling, use a
509 /// single value for all samples in the primitive.
510 Centroid,
511
512 /// Interpolate the value at each sample location. In multisampling, invoke
513 /// the fragment shader once per sample.
514 Sample,
515
516 /// Use the value provided by the first vertex of the current primitive.
517 First,
518
519 /// Use the value provided by the first or last vertex of the current primitive. The exact
520 /// choice is implementation-dependent.
521 Either,
522}
523
524/// Member of a user-defined structure.
525// Clone is used only for error reporting and is not intended for end users
526#[derive(Clone, Debug, Eq, Hash, PartialEq)]
527#[cfg_attr(feature = "serialize", derive(Serialize))]
528#[cfg_attr(feature = "deserialize", derive(Deserialize))]
529#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
530pub struct StructMember {
531 pub name: Option<String>,
532 /// Type of the field.
533 pub ty: Handle<Type>,
534 /// For I/O structs, defines the binding.
535 pub binding: Option<Binding>,
536 /// Offset from the beginning from the struct.
537 pub offset: u32,
538}
539
540/// The number of dimensions an image has.
541#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
542#[cfg_attr(feature = "serialize", derive(Serialize))]
543#[cfg_attr(feature = "deserialize", derive(Deserialize))]
544#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
545pub enum ImageDimension {
546 /// 1D image
547 D1,
548 /// 2D image
549 D2,
550 /// 3D image
551 D3,
552 /// Cube map
553 Cube,
554}
555
556bitflags::bitflags! {
557 /// Flags describing an image.
558 #[cfg_attr(feature = "serialize", derive(Serialize))]
559 #[cfg_attr(feature = "deserialize", derive(Deserialize))]
560 #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
561 #[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
562 pub struct StorageAccess: u32 {
563 /// Storage can be used as a source for load ops.
564 const LOAD = 0x1;
565 /// Storage can be used as a target for store ops.
566 const STORE = 0x2;
567 /// Storage can be used as a target for atomic ops.
568 const ATOMIC = 0x4;
569 }
570}
571
572/// Image storage format.
573#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
574#[cfg_attr(feature = "serialize", derive(Serialize))]
575#[cfg_attr(feature = "deserialize", derive(Deserialize))]
576#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
577pub enum StorageFormat {
578 // 8-bit formats
579 R8Unorm,
580 R8Snorm,
581 R8Uint,
582 R8Sint,
583
584 // 16-bit formats
585 R16Uint,
586 R16Sint,
587 R16Float,
588 Rg8Unorm,
589 Rg8Snorm,
590 Rg8Uint,
591 Rg8Sint,
592
593 // 32-bit formats
594 R32Uint,
595 R32Sint,
596 R32Float,
597 Rg16Uint,
598 Rg16Sint,
599 Rg16Float,
600 Rgba8Unorm,
601 Rgba8Snorm,
602 Rgba8Uint,
603 Rgba8Sint,
604 Bgra8Unorm,
605
606 // Packed 32-bit formats
607 Rgb10a2Uint,
608 Rgb10a2Unorm,
609 Rg11b10Ufloat,
610
611 // 64-bit formats
612 R64Uint,
613 Rg32Uint,
614 Rg32Sint,
615 Rg32Float,
616 Rgba16Uint,
617 Rgba16Sint,
618 Rgba16Float,
619
620 // 128-bit formats
621 Rgba32Uint,
622 Rgba32Sint,
623 Rgba32Float,
624
625 // Normalized 16-bit per channel formats
626 R16Unorm,
627 R16Snorm,
628 Rg16Unorm,
629 Rg16Snorm,
630 Rgba16Unorm,
631 Rgba16Snorm,
632}
633
634/// Sub-class of the image type.
635#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
636#[cfg_attr(feature = "serialize", derive(Serialize))]
637#[cfg_attr(feature = "deserialize", derive(Deserialize))]
638#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
639pub enum ImageClass {
640 /// Regular sampled image.
641 Sampled {
642 /// Kind of values to sample.
643 kind: ScalarKind,
644 /// Multi-sampled image.
645 ///
646 /// A multi-sampled image holds several samples per texel. Multi-sampled
647 /// images cannot have mipmaps.
648 multi: bool,
649 },
650 /// Depth comparison image.
651 Depth {
652 /// Multi-sampled depth image.
653 multi: bool,
654 },
655 /// External texture.
656 External,
657 /// Storage image.
658 Storage {
659 format: StorageFormat,
660 access: StorageAccess,
661 },
662}
663
664/// A data type declared in the module.
665#[derive(Clone, Debug, Eq, Hash, PartialEq)]
666#[cfg_attr(feature = "serialize", derive(Serialize))]
667#[cfg_attr(feature = "deserialize", derive(Deserialize))]
668#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
669pub struct Type {
670 /// The name of the type, if any.
671 pub name: Option<String>,
672 /// Inner structure that depends on the kind of the type.
673 pub inner: TypeInner,
674}
675
676/// Enum with additional information, depending on the kind of type.
677///
678/// Comparison using `==` is not reliable in the case of [`Pointer`],
679/// [`ValuePointer`], or [`Struct`] variants. For these variants,
680/// use [`TypeInner::non_struct_equivalent`] or [`compare_types`].
681///
682/// [`compare_types`]: crate::proc::compare_types
683/// [`ValuePointer`]: TypeInner::ValuePointer
684/// [`Pointer`]: TypeInner::Pointer
685/// [`Struct`]: TypeInner::Struct
686#[derive(Clone, Debug, Eq, Hash, PartialEq)]
687#[cfg_attr(feature = "serialize", derive(Serialize))]
688#[cfg_attr(feature = "deserialize", derive(Deserialize))]
689#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
690pub enum TypeInner {
691 /// Number of integral or floating-point kind.
692 Scalar(Scalar),
693 /// Vector of numbers.
694 Vector { size: VectorSize, scalar: Scalar },
695 /// Matrix of numbers.
696 Matrix {
697 columns: VectorSize,
698 rows: VectorSize,
699 scalar: Scalar,
700 },
701 /// Atomic scalar.
702 Atomic(Scalar),
703 /// Pointer to another type.
704 ///
705 /// Pointers to scalars and vectors should be treated as equivalent to
706 /// [`ValuePointer`] types. Use either [`TypeInner::non_struct_equivalent`]
707 /// or [`compare_types`] to compare types in a way that treats pointers
708 /// correctly.
709 ///
710 /// ## Pointers to non-`SIZED` types
711 ///
712 /// The `base` type of a pointer may be a non-[`SIZED`] type like a
713 /// dynamically-sized [`Array`], or a [`Struct`] whose last member is a
714 /// dynamically sized array. Such pointers occur as the types of
715 /// [`GlobalVariable`] or [`AccessIndex`] expressions referring to
716 /// dynamically-sized arrays.
717 ///
718 /// However, among pointers to non-`SIZED` types, only pointers to `Struct`s
719 /// are [`DATA`]. Pointers to dynamically sized `Array`s cannot be passed as
720 /// arguments, stored in variables, or held in arrays or structures. Their
721 /// only use is as the types of `AccessIndex` expressions.
722 ///
723 /// [`SIZED`]: crate::valid::TypeFlags::SIZED
724 /// [`DATA`]: crate::valid::TypeFlags::DATA
725 /// [`Array`]: TypeInner::Array
726 /// [`Struct`]: TypeInner::Struct
727 /// [`ValuePointer`]: TypeInner::ValuePointer
728 /// [`GlobalVariable`]: Expression::GlobalVariable
729 /// [`AccessIndex`]: Expression::AccessIndex
730 /// [`compare_types`]: crate::proc::compare_types
731 Pointer {
732 base: Handle<Type>,
733 space: AddressSpace,
734 },
735
736 /// Pointer to a scalar or vector.
737 ///
738 /// A `ValuePointer` type is equivalent to a `Pointer` whose `base` is a
739 /// `Scalar` or `Vector` type. This is for use in [`TypeResolution::Value`]
740 /// variants; see the documentation for [`TypeResolution`] for details.
741 ///
742 /// Use [`TypeInner::non_struct_equivalent`] or [`compare_types`] to compare
743 /// types that could be pointers, to ensure that `Pointer` and
744 /// `ValuePointer` types are recognized as equivalent.
745 ///
746 /// [`TypeResolution`]: crate::proc::TypeResolution
747 /// [`TypeResolution::Value`]: crate::proc::TypeResolution::Value
748 /// [`compare_types`]: crate::proc::compare_types
749 ValuePointer {
750 size: Option<VectorSize>,
751 scalar: Scalar,
752 space: AddressSpace,
753 },
754
755 /// Homogeneous list of elements.
756 ///
757 /// The `base` type must be a [`SIZED`], [`DATA`] type.
758 ///
759 /// ## Dynamically sized arrays
760 ///
761 /// An `Array` is [`SIZED`] unless its `size` is [`Dynamic`].
762 /// Dynamically-sized arrays may only appear in a few situations:
763 ///
764 /// - They may appear as the type of a [`GlobalVariable`], or as the last
765 /// member of a [`Struct`].
766 ///
767 /// - They may appear as the base type of a [`Pointer`]. An
768 /// [`AccessIndex`] expression referring to a struct's final
769 /// unsized array member would have such a pointer type. However, such
770 /// pointer types may only appear as the types of such intermediate
771 /// expressions. They are not [`DATA`], and cannot be stored in
772 /// variables, held in arrays or structs, or passed as parameters.
773 ///
774 /// [`SIZED`]: crate::valid::TypeFlags::SIZED
775 /// [`DATA`]: crate::valid::TypeFlags::DATA
776 /// [`Dynamic`]: ArraySize::Dynamic
777 /// [`Struct`]: TypeInner::Struct
778 /// [`Pointer`]: TypeInner::Pointer
779 /// [`AccessIndex`]: Expression::AccessIndex
780 Array {
781 base: Handle<Type>,
782 size: ArraySize,
783 stride: u32,
784 },
785
786 /// User-defined structure.
787 ///
788 /// There must always be at least one member.
789 ///
790 /// A `Struct` type is [`DATA`], and the types of its members must be
791 /// `DATA` as well.
792 ///
793 /// Member types must be [`SIZED`], except for the final member of a
794 /// struct, which may be a dynamically sized [`Array`]. The
795 /// `Struct` type itself is `SIZED` when all its members are `SIZED`.
796 ///
797 /// Two structure types with different names are not equivalent. Because
798 /// this variant does not contain the name, it is not possible to use it
799 /// to compare struct types. Use [`compare_types`] to compare two types
800 /// that may be structs.
801 ///
802 /// [`DATA`]: crate::valid::TypeFlags::DATA
803 /// [`SIZED`]: crate::∅TypeFlags::SIZED
804 /// [`Array`]: TypeInner::Array
805 /// [`compare_types`]: crate::proc::compare_types
806 Struct {
807 members: Vec<StructMember>,
808 //TODO: should this be unaligned?
809 span: u32,
810 },
811 /// Possibly multidimensional array of texels.
812 Image {
813 dim: ImageDimension,
814 arrayed: bool,
815 //TODO: consider moving `multisampled: bool` out
816 class: ImageClass,
817 },
818 /// Can be used to sample values from images.
819 Sampler { comparison: bool },
820
821 /// Opaque object representing an acceleration structure of geometry.
822 AccelerationStructure { vertex_return: bool },
823
824 /// Locally used handle for ray queries.
825 RayQuery { vertex_return: bool },
826
827 /// Array of bindings.
828 ///
829 /// A `BindingArray` represents an array where each element draws its value
830 /// from a separate bound resource. The array's element type `base` may be
831 /// [`Image`], [`Sampler`], or any type that would be permitted for a global
832 /// in the [`Uniform`] or [`Storage`] address spaces. Only global variables
833 /// may be binding arrays; on the host side, their values are provided by
834 /// [`TextureViewArray`], [`SamplerArray`], or [`BufferArray`]
835 /// bindings.
836 ///
837 /// Since each element comes from a distinct resource, a binding array of
838 /// images could have images of varying sizes (but not varying dimensions;
839 /// they must all have the same `Image` type). Or, a binding array of
840 /// buffers could have elements that are dynamically sized arrays, each with
841 /// a different length.
842 ///
843 /// Binding arrays are in the same address spaces as their underlying type.
844 /// As such, referring to an array of images produces an [`Image`] value
845 /// directly (as opposed to a pointer). The only operation permitted on
846 /// `BindingArray` values is indexing, which works transparently: indexing
847 /// a binding array of samplers yields a [`Sampler`], indexing a pointer to the
848 /// binding array of storage buffers produces a pointer to the storage struct.
849 ///
850 /// Unlike textures and samplers, binding arrays are not [`ARGUMENT`], so
851 /// they cannot be passed as arguments to functions.
852 ///
853 /// Naga's WGSL front end supports binding arrays with the type syntax
854 /// `binding_array<T, N>`.
855 ///
856 /// [`Image`]: TypeInner::Image
857 /// [`Sampler`]: TypeInner::Sampler
858 /// [`Uniform`]: AddressSpace::Uniform
859 /// [`Storage`]: AddressSpace::Storage
860 /// [`TextureViewArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.TextureViewArray
861 /// [`SamplerArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.SamplerArray
862 /// [`BufferArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.BufferArray
863 /// [`DATA`]: crate::valid::TypeFlags::DATA
864 /// [`ARGUMENT`]: crate::valid::TypeFlags::ARGUMENT
865 /// [naga#1864]: https://github.com/gfx-rs/naga/issues/1864
866 BindingArray { base: Handle<Type>, size: ArraySize },
867}
868
869#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
870#[cfg_attr(feature = "serialize", derive(Serialize))]
871#[cfg_attr(feature = "deserialize", derive(Deserialize))]
872#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
873pub enum Literal {
874 /// May not be NaN or infinity.
875 F64(f64),
876 /// May not be NaN or infinity.
877 F32(f32),
878 /// May not be NaN or infinity.
879 F16(f16),
880 U32(u32),
881 I32(i32),
882 U64(u64),
883 I64(i64),
884 Bool(bool),
885 AbstractInt(i64),
886 AbstractFloat(f64),
887}
888
889/// Pipeline-overridable constant.
890#[derive(Clone, Debug, PartialEq)]
891#[cfg_attr(feature = "serialize", derive(Serialize))]
892#[cfg_attr(feature = "deserialize", derive(Deserialize))]
893#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
894pub struct Override {
895 pub name: Option<String>,
896 /// Pipeline Constant ID.
897 pub id: Option<u16>,
898 pub ty: Handle<Type>,
899
900 /// The default value of the pipeline-overridable constant.
901 ///
902 /// This [`Handle`] refers to [`Module::global_expressions`], not
903 /// any [`Function::expressions`] arena.
904 pub init: Option<Handle<Expression>>,
905}
906
907/// Constant value.
908#[derive(Clone, Debug, PartialEq)]
909#[cfg_attr(feature = "serialize", derive(Serialize))]
910#[cfg_attr(feature = "deserialize", derive(Deserialize))]
911#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
912pub struct Constant {
913 pub name: Option<String>,
914 pub ty: Handle<Type>,
915
916 /// The value of the constant.
917 ///
918 /// This [`Handle`] refers to [`Module::global_expressions`], not
919 /// any [`Function::expressions`] arena.
920 pub init: Handle<Expression>,
921}
922
923/// Describes how an input/output variable is to be bound.
924#[derive(Clone, Debug, Eq, PartialEq, Hash)]
925#[cfg_attr(feature = "serialize", derive(Serialize))]
926#[cfg_attr(feature = "deserialize", derive(Deserialize))]
927#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
928pub enum Binding {
929 /// Built-in shader variable.
930 BuiltIn(BuiltIn),
931
932 /// Indexed location.
933 ///
934 /// Values passed from the [`Vertex`] stage to the [`Fragment`] stage must
935 /// have their `interpolation` defaulted (i.e. not `None`) by the front end
936 /// as appropriate for that language.
937 ///
938 /// For other stages, we permit interpolations even though they're ignored.
939 /// When a front end is parsing a struct type, it usually doesn't know what
940 /// stages will be using it for IO, so it's easiest if it can apply the
941 /// defaults to anything with a `Location` binding, just in case.
942 ///
943 /// For anything other than floating-point scalars and vectors, the
944 /// interpolation must be `Flat`.
945 ///
946 /// [`Vertex`]: crate::ShaderStage::Vertex
947 /// [`Fragment`]: crate::ShaderStage::Fragment
948 Location {
949 location: u32,
950 interpolation: Option<Interpolation>,
951 sampling: Option<Sampling>,
952 /// Optional `blend_src` index used for dual source blending.
953 /// See <https://www.w3.org/TR/WGSL/#attribute-blend_src>
954 blend_src: Option<u32>,
955 },
956}
957
958/// Pipeline binding information for global resources.
959#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
960#[cfg_attr(feature = "serialize", derive(Serialize))]
961#[cfg_attr(feature = "deserialize", derive(Deserialize))]
962#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
963pub struct ResourceBinding {
964 /// The bind group index.
965 pub group: u32,
966 /// Binding number within the group.
967 pub binding: u32,
968}
969
970/// Variable defined at module level.
971#[derive(Clone, Debug, PartialEq)]
972#[cfg_attr(feature = "serialize", derive(Serialize))]
973#[cfg_attr(feature = "deserialize", derive(Deserialize))]
974#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
975pub struct GlobalVariable {
976 /// Name of the variable, if any.
977 pub name: Option<String>,
978 /// How this variable is to be stored.
979 pub space: AddressSpace,
980 /// For resources, defines the binding point.
981 pub binding: Option<ResourceBinding>,
982 /// The type of this variable.
983 pub ty: Handle<Type>,
984 /// Initial value for this variable.
985 ///
986 /// This refers to an [`Expression`] in [`Module::global_expressions`].
987 pub init: Option<Handle<Expression>>,
988}
989
990/// Variable defined at function level.
991#[derive(Clone, Debug)]
992#[cfg_attr(feature = "serialize", derive(Serialize))]
993#[cfg_attr(feature = "deserialize", derive(Deserialize))]
994#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
995pub struct LocalVariable {
996 /// Name of the variable, if any.
997 pub name: Option<String>,
998 /// The type of this variable.
999 pub ty: Handle<Type>,
1000 /// Initial value for this variable.
1001 ///
1002 /// This handle refers to an expression in this `LocalVariable`'s function's
1003 /// [`expressions`] arena, but it is required to be an evaluated override
1004 /// expression.
1005 ///
1006 /// [`expressions`]: Function::expressions
1007 pub init: Option<Handle<Expression>>,
1008}
1009
1010/// Operation that can be applied on a single value.
1011#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1012#[cfg_attr(feature = "serialize", derive(Serialize))]
1013#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1014#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1015pub enum UnaryOperator {
1016 Negate,
1017 LogicalNot,
1018 BitwiseNot,
1019}
1020
1021/// Operation that can be applied on two values.
1022///
1023/// ## Arithmetic type rules
1024///
1025/// The arithmetic operations `Add`, `Subtract`, `Multiply`, `Divide`, and
1026/// `Modulo` can all be applied to [`Scalar`] types other than [`Bool`], or
1027/// [`Vector`]s thereof. Both operands must have the same type.
1028///
1029/// `Add` and `Subtract` can also be applied to [`Matrix`] values. Both operands
1030/// must have the same type.
1031///
1032/// `Multiply` supports additional cases:
1033///
1034/// - A [`Matrix`] or [`Vector`] can be multiplied by a scalar [`Float`],
1035/// either on the left or the right.
1036///
1037/// - A [`Matrix`] on the left can be multiplied by a [`Vector`] on the right
1038/// if the matrix has as many columns as the vector has components
1039/// (`matCxR * VecC`).
1040///
1041/// - A [`Vector`] on the left can be multiplied by a [`Matrix`] on the right
1042/// if the matrix has as many rows as the vector has components
1043/// (`VecR * matCxR`).
1044///
1045/// - Two matrices can be multiplied if the left operand has as many columns
1046/// as the right operand has rows (`matNxR * matCxN`).
1047///
1048/// In all the above `Multiply` cases, the byte widths of the underlying scalar
1049/// types of both operands must be the same.
1050///
1051/// Note that `Multiply` supports mixed vector and scalar operations directly,
1052/// whereas the other arithmetic operations require an explicit [`Splat`] for
1053/// mixed-type use.
1054///
1055/// [`Scalar`]: TypeInner::Scalar
1056/// [`Vector`]: TypeInner::Vector
1057/// [`Matrix`]: TypeInner::Matrix
1058/// [`Float`]: ScalarKind::Float
1059/// [`Bool`]: ScalarKind::Bool
1060/// [`Splat`]: Expression::Splat
1061#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1062#[cfg_attr(feature = "serialize", derive(Serialize))]
1063#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1064#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1065pub enum BinaryOperator {
1066 Add,
1067 Subtract,
1068 Multiply,
1069 Divide,
1070 /// Equivalent of the WGSL's `%` operator or SPIR-V's `OpFRem`
1071 Modulo,
1072 Equal,
1073 NotEqual,
1074 Less,
1075 LessEqual,
1076 Greater,
1077 GreaterEqual,
1078 And,
1079 ExclusiveOr,
1080 InclusiveOr,
1081 LogicalAnd,
1082 LogicalOr,
1083 ShiftLeft,
1084 /// Right shift carries the sign of signed integers only.
1085 ShiftRight,
1086}
1087
1088/// Function on an atomic value.
1089///
1090/// Note: these do not include load/store, which use the existing
1091/// [`Expression::Load`] and [`Statement::Store`].
1092///
1093/// All `Handle<Expression>` values here refer to an expression in
1094/// [`Function::expressions`].
1095#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1096#[cfg_attr(feature = "serialize", derive(Serialize))]
1097#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1098#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1099pub enum AtomicFunction {
1100 Add,
1101 Subtract,
1102 And,
1103 ExclusiveOr,
1104 InclusiveOr,
1105 Min,
1106 Max,
1107 Exchange { compare: Option<Handle<Expression>> },
1108}
1109
1110/// Hint at which precision to compute a derivative.
1111#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1112#[cfg_attr(feature = "serialize", derive(Serialize))]
1113#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1114#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1115pub enum DerivativeControl {
1116 Coarse,
1117 Fine,
1118 None,
1119}
1120
1121/// Axis on which to compute a derivative.
1122#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1123#[cfg_attr(feature = "serialize", derive(Serialize))]
1124#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1125#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1126pub enum DerivativeAxis {
1127 X,
1128 Y,
1129 Width,
1130}
1131
1132/// Built-in shader function for testing relation between values.
1133#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1134#[cfg_attr(feature = "serialize", derive(Serialize))]
1135#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1136#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1137pub enum RelationalFunction {
1138 All,
1139 Any,
1140 IsNan,
1141 IsInf,
1142}
1143
1144/// Built-in shader function for math.
1145#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1146#[cfg_attr(feature = "serialize", derive(Serialize))]
1147#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1148#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1149pub enum MathFunction {
1150 // comparison
1151 Abs,
1152 Min,
1153 Max,
1154 Clamp,
1155 Saturate,
1156 // trigonometry
1157 Cos,
1158 Cosh,
1159 Sin,
1160 Sinh,
1161 Tan,
1162 Tanh,
1163 Acos,
1164 Asin,
1165 Atan,
1166 Atan2,
1167 Asinh,
1168 Acosh,
1169 Atanh,
1170 Radians,
1171 Degrees,
1172 // decomposition
1173 Ceil,
1174 Floor,
1175 Round,
1176 Fract,
1177 Trunc,
1178 Modf,
1179 Frexp,
1180 Ldexp,
1181 // exponent
1182 Exp,
1183 Exp2,
1184 Log,
1185 Log2,
1186 Pow,
1187 // geometry
1188 Dot,
1189 Dot4I8Packed,
1190 Dot4U8Packed,
1191 Outer,
1192 Cross,
1193 Distance,
1194 Length,
1195 Normalize,
1196 FaceForward,
1197 Reflect,
1198 Refract,
1199 // computational
1200 Sign,
1201 Fma,
1202 Mix,
1203 Step,
1204 SmoothStep,
1205 Sqrt,
1206 InverseSqrt,
1207 Inverse,
1208 Transpose,
1209 Determinant,
1210 QuantizeToF16,
1211 // bits
1212 CountTrailingZeros,
1213 CountLeadingZeros,
1214 CountOneBits,
1215 ReverseBits,
1216 ExtractBits,
1217 InsertBits,
1218 FirstTrailingBit,
1219 FirstLeadingBit,
1220 // data packing
1221 Pack4x8snorm,
1222 Pack4x8unorm,
1223 Pack2x16snorm,
1224 Pack2x16unorm,
1225 Pack2x16float,
1226 Pack4xI8,
1227 Pack4xU8,
1228 Pack4xI8Clamp,
1229 Pack4xU8Clamp,
1230 // data unpacking
1231 Unpack4x8snorm,
1232 Unpack4x8unorm,
1233 Unpack2x16snorm,
1234 Unpack2x16unorm,
1235 Unpack2x16float,
1236 Unpack4xI8,
1237 Unpack4xU8,
1238}
1239
1240/// Sampling modifier to control the level of detail.
1241///
1242/// All `Handle<Expression>` values here refer to an expression in
1243/// [`Function::expressions`].
1244#[derive(Clone, Copy, Debug, PartialEq)]
1245#[cfg_attr(feature = "serialize", derive(Serialize))]
1246#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1247#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1248pub enum SampleLevel {
1249 Auto,
1250 Zero,
1251 Exact(Handle<Expression>),
1252 Bias(Handle<Expression>),
1253 Gradient {
1254 x: Handle<Expression>,
1255 y: Handle<Expression>,
1256 },
1257}
1258
1259/// Type of an image query.
1260///
1261/// All `Handle<Expression>` values here refer to an expression in
1262/// [`Function::expressions`].
1263#[derive(Clone, Copy, Debug, PartialEq)]
1264#[cfg_attr(feature = "serialize", derive(Serialize))]
1265#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1266#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1267pub enum ImageQuery {
1268 /// Get the size at the specified level.
1269 ///
1270 /// The return value is a `u32` for 1D images, and a `vecN<u32>`
1271 /// for an image with dimensions N > 2.
1272 Size {
1273 /// If `None`, the base level is considered.
1274 level: Option<Handle<Expression>>,
1275 },
1276 /// Get the number of mipmap levels, a `u32`.
1277 NumLevels,
1278 /// Get the number of array layers, a `u32`.
1279 NumLayers,
1280 /// Get the number of samples, a `u32`.
1281 NumSamples,
1282}
1283
1284/// Component selection for a vector swizzle.
1285#[repr(u8)]
1286#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
1287#[cfg_attr(feature = "serialize", derive(Serialize))]
1288#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1289#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1290pub enum SwizzleComponent {
1291 X = 0,
1292 Y = 1,
1293 Z = 2,
1294 W = 3,
1295}
1296
1297/// The specific behavior of a [`SubgroupGather`] statement.
1298///
1299/// All `Handle<Expression>` values here refer to an expression in
1300/// [`Function::expressions`].
1301///
1302/// [`SubgroupGather`]: Statement::SubgroupGather
1303#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1304#[cfg_attr(feature = "serialize", derive(Serialize))]
1305#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1306#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1307pub enum GatherMode {
1308 /// All gather from the active lane with the smallest index
1309 BroadcastFirst,
1310 /// All gather from the same lane at the index given by the expression
1311 Broadcast(Handle<Expression>),
1312 /// Each gathers from a different lane at the index given by the expression
1313 Shuffle(Handle<Expression>),
1314 /// Each gathers from their lane plus the shift given by the expression
1315 ShuffleDown(Handle<Expression>),
1316 /// Each gathers from their lane minus the shift given by the expression
1317 ShuffleUp(Handle<Expression>),
1318 /// Each gathers from their lane xored with the given by the expression
1319 ShuffleXor(Handle<Expression>),
1320 /// All gather from the same quad lane at the index given by the expression
1321 QuadBroadcast(Handle<Expression>),
1322 /// Each gathers from the opposite quad lane along the given direction
1323 QuadSwap(Direction),
1324}
1325
1326#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1327#[cfg_attr(feature = "serialize", derive(Serialize))]
1328#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1329#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1330pub enum Direction {
1331 X = 0,
1332 Y = 1,
1333 Diagonal = 2,
1334}
1335
1336#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1337#[cfg_attr(feature = "serialize", derive(Serialize))]
1338#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1339#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1340pub enum SubgroupOperation {
1341 All = 0,
1342 Any = 1,
1343 Add = 2,
1344 Mul = 3,
1345 Min = 4,
1346 Max = 5,
1347 And = 6,
1348 Or = 7,
1349 Xor = 8,
1350}
1351
1352#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1353#[cfg_attr(feature = "serialize", derive(Serialize))]
1354#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1355#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1356pub enum CollectiveOperation {
1357 Reduce = 0,
1358 InclusiveScan = 1,
1359 ExclusiveScan = 2,
1360}
1361
1362bitflags::bitflags! {
1363 /// Memory barrier flags.
1364 #[cfg_attr(feature = "serialize", derive(Serialize))]
1365 #[cfg_attr(feature = "deserialize", derive(Deserialize))]
1366 #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1367 #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
1368 pub struct Barrier: u32 {
1369 /// Barrier affects all [`AddressSpace::Storage`] accesses.
1370 const STORAGE = 1 << 0;
1371 /// Barrier affects all [`AddressSpace::WorkGroup`] accesses.
1372 const WORK_GROUP = 1 << 1;
1373 /// Barrier synchronizes execution across all invocations within a subgroup that execute this instruction.
1374 const SUB_GROUP = 1 << 2;
1375 /// Barrier synchronizes texture memory accesses in a workgroup.
1376 const TEXTURE = 1 << 3;
1377 }
1378}
1379
1380/// An expression that can be evaluated to obtain a value.
1381///
1382/// This is a Single Static Assignment (SSA) scheme similar to SPIR-V.
1383///
1384/// When an `Expression` variant holds `Handle<Expression>` fields, they refer
1385/// to another expression in the same arena, unless explicitly noted otherwise.
1386/// One `Arena<Expression>` may only refer to a different arena indirectly, via
1387/// [`Constant`] or [`Override`] expressions, which hold handles for their
1388/// respective types.
1389///
1390/// [`Constant`]: Expression::Constant
1391/// [`Override`]: Expression::Override
1392#[derive(Clone, Debug, PartialEq)]
1393#[cfg_attr(feature = "serialize", derive(Serialize))]
1394#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1395#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1396pub enum Expression {
1397 /// Literal.
1398 Literal(Literal),
1399 /// Constant value.
1400 Constant(Handle<Constant>),
1401 /// Pipeline-overridable constant.
1402 Override(Handle<Override>),
1403 /// Zero value of a type.
1404 ZeroValue(Handle<Type>),
1405 /// Composite expression.
1406 Compose {
1407 ty: Handle<Type>,
1408 components: Vec<Handle<Expression>>,
1409 },
1410
1411 /// Array access with a computed index.
1412 ///
1413 /// ## Typing rules
1414 ///
1415 /// The `base` operand must be some composite type: [`Vector`], [`Matrix`],
1416 /// [`Array`], a [`Pointer`] to one of those, or a [`ValuePointer`] with a
1417 /// `size`.
1418 ///
1419 /// The `index` operand must be an integer, signed or unsigned.
1420 ///
1421 /// Indexing a [`Vector`] or [`Array`] produces a value of its element type.
1422 /// Indexing a [`Matrix`] produces a [`Vector`].
1423 ///
1424 /// Indexing a [`Pointer`] to any of the above produces a pointer to the
1425 /// element/component type, in the same [`space`]. In the case of [`Array`],
1426 /// the result is an actual [`Pointer`], but for vectors and matrices, there
1427 /// may not be any type in the arena representing the component's type, so
1428 /// those produce [`ValuePointer`] types equivalent to the appropriate
1429 /// [`Pointer`].
1430 ///
1431 /// ## Dynamic indexing restrictions
1432 ///
1433 /// To accommodate restrictions in some of the shader languages that Naga
1434 /// targets, it is not permitted to subscript a matrix with a dynamically
1435 /// computed index unless that matrix appears behind a pointer. In other
1436 /// words, if the inner type of `base` is [`Matrix`], then `index` must be a
1437 /// constant. But if the type of `base` is a [`Pointer`] to an matrix, then
1438 /// the index may be any expression of integer type.
1439 ///
1440 /// You can use the [`Expression::is_dynamic_index`] method to determine
1441 /// whether a given index expression requires matrix base operands to be
1442 /// behind a pointer.
1443 ///
1444 /// (It would be simpler to always require the use of `AccessIndex` when
1445 /// subscripting matrices that are not behind pointers, but to accommodate
1446 /// existing front ends, Naga also permits `Access`, with a restricted
1447 /// `index`.)
1448 ///
1449 /// [`Vector`]: TypeInner::Vector
1450 /// [`Matrix`]: TypeInner::Matrix
1451 /// [`Array`]: TypeInner::Array
1452 /// [`Pointer`]: TypeInner::Pointer
1453 /// [`space`]: TypeInner::Pointer::space
1454 /// [`ValuePointer`]: TypeInner::ValuePointer
1455 /// [`Float`]: ScalarKind::Float
1456 Access {
1457 base: Handle<Expression>,
1458 index: Handle<Expression>,
1459 },
1460 /// Access the same types as [`Access`], plus [`Struct`] with a known index.
1461 ///
1462 /// [`Access`]: Expression::Access
1463 /// [`Struct`]: TypeInner::Struct
1464 AccessIndex {
1465 base: Handle<Expression>,
1466 index: u32,
1467 },
1468 /// Splat scalar into a vector.
1469 Splat {
1470 size: VectorSize,
1471 value: Handle<Expression>,
1472 },
1473 /// Vector swizzle.
1474 Swizzle {
1475 size: VectorSize,
1476 vector: Handle<Expression>,
1477 pattern: [SwizzleComponent; 4],
1478 },
1479
1480 /// Reference a function parameter, by its index.
1481 ///
1482 /// A `FunctionArgument` expression evaluates to the argument's value.
1483 FunctionArgument(u32),
1484
1485 /// Reference a global variable.
1486 ///
1487 /// If the given `GlobalVariable`'s [`space`] is [`AddressSpace::Handle`],
1488 /// then the variable stores some opaque type like a sampler or an image,
1489 /// and a `GlobalVariable` expression referring to it produces the
1490 /// variable's value directly.
1491 ///
1492 /// For any other address space, a `GlobalVariable` expression produces a
1493 /// pointer to the variable's value. You must use a [`Load`] expression to
1494 /// retrieve its value, or a [`Store`] statement to assign it a new value.
1495 ///
1496 /// [`space`]: GlobalVariable::space
1497 /// [`Load`]: Expression::Load
1498 /// [`Store`]: Statement::Store
1499 GlobalVariable(Handle<GlobalVariable>),
1500
1501 /// Reference a local variable.
1502 ///
1503 /// A `LocalVariable` expression evaluates to a pointer to the variable's value.
1504 /// You must use a [`Load`](Expression::Load) expression to retrieve its value,
1505 /// or a [`Store`](Statement::Store) statement to assign it a new value.
1506 LocalVariable(Handle<LocalVariable>),
1507
1508 /// Load a value indirectly.
1509 ///
1510 /// For [`TypeInner::Atomic`] the result is a corresponding scalar.
1511 /// For other types behind the `pointer<T>`, the result is `T`.
1512 Load { pointer: Handle<Expression> },
1513 /// Sample a point from a sampled or a depth image.
1514 ImageSample {
1515 image: Handle<Expression>,
1516 sampler: Handle<Expression>,
1517 /// If Some(), this operation is a gather operation
1518 /// on the selected component.
1519 gather: Option<SwizzleComponent>,
1520 coordinate: Handle<Expression>,
1521 array_index: Option<Handle<Expression>>,
1522 /// This must be a const-expression.
1523 offset: Option<Handle<Expression>>,
1524 level: SampleLevel,
1525 depth_ref: Option<Handle<Expression>>,
1526 /// Whether the sampling operation should clamp each component of
1527 /// `coordinate` to the range `[half_texel, 1 - half_texel]`, regardless
1528 /// of `sampler`.
1529 clamp_to_edge: bool,
1530 },
1531
1532 /// Load a texel from an image.
1533 ///
1534 /// For most images, this returns a four-element vector of the same
1535 /// [`ScalarKind`] as the image. If the format of the image does not have
1536 /// four components, default values are provided: the first three components
1537 /// (typically R, G, and B) default to zero, and the final component
1538 /// (typically alpha) defaults to one.
1539 ///
1540 /// However, if the image's [`class`] is [`Depth`], then this returns a
1541 /// [`Float`] scalar value.
1542 ///
1543 /// [`ScalarKind`]: ScalarKind
1544 /// [`class`]: TypeInner::Image::class
1545 /// [`Depth`]: ImageClass::Depth
1546 /// [`Float`]: ScalarKind::Float
1547 ImageLoad {
1548 /// The image to load a texel from. This must have type [`Image`]. (This
1549 /// will necessarily be a [`GlobalVariable`] or [`FunctionArgument`]
1550 /// expression, since no other expressions are allowed to have that
1551 /// type.)
1552 ///
1553 /// [`Image`]: TypeInner::Image
1554 /// [`GlobalVariable`]: Expression::GlobalVariable
1555 /// [`FunctionArgument`]: Expression::FunctionArgument
1556 image: Handle<Expression>,
1557
1558 /// The coordinate of the texel we wish to load. This must be a scalar
1559 /// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
1560 /// vector for [`D3`] images. (Array indices, sample indices, and
1561 /// explicit level-of-detail values are supplied separately.) Its
1562 /// component type must be [`Sint`].
1563 ///
1564 /// [`D1`]: ImageDimension::D1
1565 /// [`D2`]: ImageDimension::D2
1566 /// [`D3`]: ImageDimension::D3
1567 /// [`Bi`]: VectorSize::Bi
1568 /// [`Tri`]: VectorSize::Tri
1569 /// [`Sint`]: ScalarKind::Sint
1570 coordinate: Handle<Expression>,
1571
1572 /// The index into an arrayed image. If the [`arrayed`] flag in
1573 /// `image`'s type is `true`, then this must be `Some(expr)`, where
1574 /// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
1575 ///
1576 /// [`arrayed`]: TypeInner::Image::arrayed
1577 /// [`Sint`]: ScalarKind::Sint
1578 array_index: Option<Handle<Expression>>,
1579
1580 /// A sample index, for multisampled [`Sampled`] and [`Depth`] images.
1581 ///
1582 /// [`Sampled`]: ImageClass::Sampled
1583 /// [`Depth`]: ImageClass::Depth
1584 sample: Option<Handle<Expression>>,
1585
1586 /// A level of detail, for mipmapped images.
1587 ///
1588 /// This must be present when accessing non-multisampled
1589 /// [`Sampled`] and [`Depth`] images, even if only the
1590 /// full-resolution level is present (in which case the only
1591 /// valid level is zero).
1592 ///
1593 /// [`Sampled`]: ImageClass::Sampled
1594 /// [`Depth`]: ImageClass::Depth
1595 level: Option<Handle<Expression>>,
1596 },
1597
1598 /// Query information from an image.
1599 ImageQuery {
1600 image: Handle<Expression>,
1601 query: ImageQuery,
1602 },
1603 /// Apply an unary operator.
1604 Unary {
1605 op: UnaryOperator,
1606 expr: Handle<Expression>,
1607 },
1608 /// Apply a binary operator.
1609 Binary {
1610 op: BinaryOperator,
1611 left: Handle<Expression>,
1612 right: Handle<Expression>,
1613 },
1614 /// Select between two values based on a condition.
1615 ///
1616 /// Note that, because expressions have no side effects, it is unobservable
1617 /// whether the non-selected branch is evaluated.
1618 Select {
1619 /// Boolean expression
1620 condition: Handle<Expression>,
1621 accept: Handle<Expression>,
1622 reject: Handle<Expression>,
1623 },
1624 /// Compute the derivative on an axis.
1625 Derivative {
1626 axis: DerivativeAxis,
1627 ctrl: DerivativeControl,
1628 expr: Handle<Expression>,
1629 },
1630 /// Call a relational function.
1631 Relational {
1632 fun: RelationalFunction,
1633 argument: Handle<Expression>,
1634 },
1635 /// Call a math function
1636 Math {
1637 fun: MathFunction,
1638 arg: Handle<Expression>,
1639 arg1: Option<Handle<Expression>>,
1640 arg2: Option<Handle<Expression>>,
1641 arg3: Option<Handle<Expression>>,
1642 },
1643 /// Cast a simple type to another kind.
1644 As {
1645 /// Source expression, which can only be a scalar or a vector.
1646 expr: Handle<Expression>,
1647 /// Target scalar kind.
1648 kind: ScalarKind,
1649 /// If provided, converts to the specified byte width.
1650 /// Otherwise, bitcast.
1651 convert: Option<Bytes>,
1652 },
1653 /// Result of calling another function.
1654 CallResult(Handle<Function>),
1655
1656 /// Result of an atomic operation.
1657 ///
1658 /// This expression must be referred to by the [`result`] field of exactly one
1659 /// [`Atomic`][stmt] statement somewhere in the same function. Let `T` be the
1660 /// scalar type contained by the [`Atomic`][type] value that the statement
1661 /// operates on.
1662 ///
1663 /// If `comparison` is `false`, then `ty` must be the scalar type `T`.
1664 ///
1665 /// If `comparison` is `true`, then `ty` must be a [`Struct`] with two members:
1666 ///
1667 /// - A member named `old_value`, whose type is `T`, and
1668 ///
1669 /// - A member named `exchanged`, of type [`BOOL`].
1670 ///
1671 /// [`result`]: Statement::Atomic::result
1672 /// [stmt]: Statement::Atomic
1673 /// [type]: TypeInner::Atomic
1674 /// [`Struct`]: TypeInner::Struct
1675 /// [`BOOL`]: Scalar::BOOL
1676 AtomicResult { ty: Handle<Type>, comparison: bool },
1677
1678 /// Result of a [`WorkGroupUniformLoad`] statement.
1679 ///
1680 /// [`WorkGroupUniformLoad`]: Statement::WorkGroupUniformLoad
1681 WorkGroupUniformLoadResult {
1682 /// The type of the result
1683 ty: Handle<Type>,
1684 },
1685 /// Get the length of an array.
1686 /// The expression must resolve to a pointer to an array with a dynamic size.
1687 ///
1688 /// This doesn't match the semantics of spirv's `OpArrayLength`, which must be passed
1689 /// a pointer to a structure containing a runtime array in its' last field.
1690 ArrayLength(Handle<Expression>),
1691
1692 /// Get the Positions of the triangle hit by the [`RayQuery`]
1693 ///
1694 /// [`RayQuery`]: Statement::RayQuery
1695 RayQueryVertexPositions {
1696 query: Handle<Expression>,
1697 committed: bool,
1698 },
1699
1700 /// Result of a [`Proceed`] [`RayQuery`] statement.
1701 ///
1702 /// [`Proceed`]: RayQueryFunction::Proceed
1703 /// [`RayQuery`]: Statement::RayQuery
1704 RayQueryProceedResult,
1705
1706 /// Return an intersection found by `query`.
1707 ///
1708 /// If `committed` is true, return the committed result available when
1709 RayQueryGetIntersection {
1710 query: Handle<Expression>,
1711 committed: bool,
1712 },
1713 /// Result of a [`SubgroupBallot`] statement.
1714 ///
1715 /// [`SubgroupBallot`]: Statement::SubgroupBallot
1716 SubgroupBallotResult,
1717 /// Result of a [`SubgroupCollectiveOperation`] or [`SubgroupGather`] statement.
1718 ///
1719 /// [`SubgroupCollectiveOperation`]: Statement::SubgroupCollectiveOperation
1720 /// [`SubgroupGather`]: Statement::SubgroupGather
1721 SubgroupOperationResult { ty: Handle<Type> },
1722}
1723
1724/// The value of the switch case.
1725#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
1726#[cfg_attr(feature = "serialize", derive(Serialize))]
1727#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1728#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1729pub enum SwitchValue {
1730 I32(i32),
1731 U32(u32),
1732 Default,
1733}
1734
1735/// A case for a switch statement.
1736// Clone is used only for error reporting and is not intended for end users
1737#[derive(Clone, Debug)]
1738#[cfg_attr(feature = "serialize", derive(Serialize))]
1739#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1740#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1741pub struct SwitchCase {
1742 /// Value, upon which the case is considered true.
1743 pub value: SwitchValue,
1744 /// Body of the case.
1745 pub body: Block,
1746 /// If true, the control flow continues to the next case in the list,
1747 /// or default.
1748 pub fall_through: bool,
1749}
1750
1751/// An operation that a [`RayQuery` statement] applies to its [`query`] operand.
1752///
1753/// [`RayQuery` statement]: Statement::RayQuery
1754/// [`query`]: Statement::RayQuery::query
1755#[derive(Clone, Debug)]
1756#[cfg_attr(feature = "serialize", derive(Serialize))]
1757#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1758#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1759pub enum RayQueryFunction {
1760 /// Initialize the `RayQuery` object.
1761 Initialize {
1762 /// The acceleration structure within which this query should search for hits.
1763 ///
1764 /// The expression must be an [`AccelerationStructure`].
1765 ///
1766 /// [`AccelerationStructure`]: TypeInner::AccelerationStructure
1767 acceleration_structure: Handle<Expression>,
1768
1769 #[allow(rustdoc::private_intra_doc_links)]
1770 /// A struct of detailed parameters for the ray query.
1771 ///
1772 /// This expression should have the struct type given in
1773 /// [`SpecialTypes::ray_desc`]. This is available in the WGSL
1774 /// front end as the `RayDesc` type.
1775 descriptor: Handle<Expression>,
1776 },
1777
1778 /// Start or continue the query given by the statement's [`query`] operand.
1779 ///
1780 /// After executing this statement, the `result` expression is a
1781 /// [`Bool`] scalar indicating whether there are more intersection
1782 /// candidates to consider.
1783 ///
1784 /// [`query`]: Statement::RayQuery::query
1785 /// [`Bool`]: ScalarKind::Bool
1786 Proceed {
1787 result: Handle<Expression>,
1788 },
1789
1790 /// Add a candidate generated intersection to be included
1791 /// in the determination of the closest hit for a ray query.
1792 GenerateIntersection {
1793 hit_t: Handle<Expression>,
1794 },
1795
1796 /// Confirm a triangle intersection to be included in the determination of
1797 /// the closest hit for a ray query.
1798 ConfirmIntersection,
1799
1800 Terminate,
1801}
1802
1803//TODO: consider removing `Clone`. It's not valid to clone `Statement::Emit` anyway.
1804/// Instructions which make up an executable block.
1805///
1806/// `Handle<Expression>` and `Range<Expression>` values in `Statement` variants
1807/// refer to expressions in [`Function::expressions`], unless otherwise noted.
1808// Clone is used only for error reporting and is not intended for end users
1809#[derive(Clone, Debug)]
1810#[cfg_attr(feature = "serialize", derive(Serialize))]
1811#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1812#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1813pub enum Statement {
1814 /// Emit a range of expressions, visible to all statements that follow in this block.
1815 ///
1816 /// See the [module-level documentation][emit] for details.
1817 ///
1818 /// [emit]: index.html#expression-evaluation-time
1819 Emit(Range<Expression>),
1820 /// A block containing more statements, to be executed sequentially.
1821 Block(Block),
1822 /// Conditionally executes one of two blocks, based on the value of the condition.
1823 ///
1824 /// Naga IR does not have "phi" instructions. If you need to use
1825 /// values computed in an `accept` or `reject` block after the `If`,
1826 /// store them in a [`LocalVariable`].
1827 If {
1828 condition: Handle<Expression>, //bool
1829 accept: Block,
1830 reject: Block,
1831 },
1832 /// Conditionally executes one of multiple blocks, based on the value of the selector.
1833 ///
1834 /// Each case must have a distinct [`value`], exactly one of which must be
1835 /// [`Default`]. The `Default` may appear at any position, and covers all
1836 /// values not explicitly appearing in other cases. A `Default` appearing in
1837 /// the midst of the list of cases does not shadow the cases that follow.
1838 ///
1839 /// Some backend languages don't support fallthrough (HLSL due to FXC,
1840 /// WGSL), and may translate fallthrough cases in the IR by duplicating
1841 /// code. However, all backend languages do support cases selected by
1842 /// multiple values, like `case 1: case 2: case 3: { ... }`. This is
1843 /// represented in the IR as a series of fallthrough cases with empty
1844 /// bodies, except for the last.
1845 ///
1846 /// Naga IR does not have "phi" instructions. If you need to use
1847 /// values computed in a [`SwitchCase::body`] block after the `Switch`,
1848 /// store them in a [`LocalVariable`].
1849 ///
1850 /// [`value`]: SwitchCase::value
1851 /// [`body`]: SwitchCase::body
1852 /// [`Default`]: SwitchValue::Default
1853 Switch {
1854 selector: Handle<Expression>,
1855 cases: Vec<SwitchCase>,
1856 },
1857
1858 /// Executes a block repeatedly.
1859 ///
1860 /// Each iteration of the loop executes the `body` block, followed by the
1861 /// `continuing` block.
1862 ///
1863 /// Executing a [`Break`], [`Return`] or [`Kill`] statement exits the loop.
1864 ///
1865 /// A [`Continue`] statement in `body` jumps to the `continuing` block. The
1866 /// `continuing` block is meant to be used to represent structures like the
1867 /// third expression of a C-style `for` loop head, to which `continue`
1868 /// statements in the loop's body jump.
1869 ///
1870 /// The `continuing` block and its substatements must not contain `Return`
1871 /// or `Kill` statements, or any `Break` or `Continue` statements targeting
1872 /// this loop. (It may have `Break` and `Continue` statements targeting
1873 /// loops or switches nested within the `continuing` block.) Expressions
1874 /// emitted in `body` are in scope in `continuing`.
1875 ///
1876 /// If present, `break_if` is an expression which is evaluated after the
1877 /// continuing block. Expressions emitted in `body` or `continuing` are
1878 /// considered to be in scope. If the expression's value is true, control
1879 /// continues after the `Loop` statement, rather than branching back to the
1880 /// top of body as usual. The `break_if` expression corresponds to a "break
1881 /// if" statement in WGSL, or a loop whose back edge is an
1882 /// `OpBranchConditional` instruction in SPIR-V.
1883 ///
1884 /// Naga IR does not have "phi" instructions. If you need to use
1885 /// values computed in a `body` or `continuing` block after the
1886 /// `Loop`, store them in a [`LocalVariable`].
1887 ///
1888 /// [`Break`]: Statement::Break
1889 /// [`Continue`]: Statement::Continue
1890 /// [`Kill`]: Statement::Kill
1891 /// [`Return`]: Statement::Return
1892 /// [`break if`]: Self::Loop::break_if
1893 Loop {
1894 body: Block,
1895 continuing: Block,
1896 break_if: Option<Handle<Expression>>,
1897 },
1898
1899 /// Exits the innermost enclosing [`Loop`] or [`Switch`].
1900 ///
1901 /// A `Break` statement may only appear within a [`Loop`] or [`Switch`]
1902 /// statement. It may not break out of a [`Loop`] from within the loop's
1903 /// `continuing` block.
1904 ///
1905 /// [`Loop`]: Statement::Loop
1906 /// [`Switch`]: Statement::Switch
1907 Break,
1908
1909 /// Skips to the `continuing` block of the innermost enclosing [`Loop`].
1910 ///
1911 /// A `Continue` statement may only appear within the `body` block of the
1912 /// innermost enclosing [`Loop`] statement. It must not appear within that
1913 /// loop's `continuing` block.
1914 ///
1915 /// [`Loop`]: Statement::Loop
1916 Continue,
1917
1918 /// Returns from the function (possibly with a value).
1919 ///
1920 /// `Return` statements are forbidden within the `continuing` block of a
1921 /// [`Loop`] statement.
1922 ///
1923 /// [`Loop`]: Statement::Loop
1924 Return { value: Option<Handle<Expression>> },
1925
1926 /// Aborts the current shader execution.
1927 ///
1928 /// `Kill` statements are forbidden within the `continuing` block of a
1929 /// [`Loop`] statement.
1930 ///
1931 /// [`Loop`]: Statement::Loop
1932 Kill,
1933
1934 /// Synchronize invocations within the work group.
1935 /// The `Barrier` flags control which memory accesses should be synchronized.
1936 /// If empty, this becomes purely an execution barrier.
1937 ControlBarrier(Barrier),
1938
1939 /// Synchronize invocations within the work group.
1940 /// The `Barrier` flags control which memory accesses should be synchronized.
1941 MemoryBarrier(Barrier),
1942
1943 /// Stores a value at an address.
1944 ///
1945 /// For [`TypeInner::Atomic`] type behind the pointer, the value
1946 /// has to be a corresponding scalar.
1947 /// For other types behind the `pointer<T>`, the value is `T`.
1948 ///
1949 /// This statement is a barrier for any operations on the
1950 /// `Expression::LocalVariable` or `Expression::GlobalVariable`
1951 /// that is the destination of an access chain, started
1952 /// from the `pointer`.
1953 Store {
1954 pointer: Handle<Expression>,
1955 value: Handle<Expression>,
1956 },
1957 /// Stores a texel value to an image.
1958 ///
1959 /// The `image`, `coordinate`, and `array_index` fields have the same
1960 /// meanings as the corresponding operands of an [`ImageLoad`] expression;
1961 /// see that documentation for details. Storing into multisampled images or
1962 /// images with mipmaps is not supported, so there are no `level` or
1963 /// `sample` operands.
1964 ///
1965 /// This statement is a barrier for any operations on the corresponding
1966 /// [`Expression::GlobalVariable`] for this image.
1967 ///
1968 /// [`ImageLoad`]: Expression::ImageLoad
1969 ImageStore {
1970 image: Handle<Expression>,
1971 coordinate: Handle<Expression>,
1972 array_index: Option<Handle<Expression>>,
1973 value: Handle<Expression>,
1974 },
1975 /// Atomic function.
1976 Atomic {
1977 /// Pointer to an atomic value.
1978 ///
1979 /// This must be a [`Pointer`] to an [`Atomic`] value. The atomic's
1980 /// scalar type may be [`I32`] or [`U32`].
1981 ///
1982 /// If [`SHADER_INT64_ATOMIC_MIN_MAX`] or [`SHADER_INT64_ATOMIC_ALL_OPS`] are
1983 /// enabled, this may also be [`I64`] or [`U64`].
1984 ///
1985 /// If [`SHADER_FLOAT32_ATOMIC`] is enabled, this may be [`F32`].
1986 ///
1987 /// [`Pointer`]: TypeInner::Pointer
1988 /// [`Atomic`]: TypeInner::Atomic
1989 /// [`I32`]: Scalar::I32
1990 /// [`U32`]: Scalar::U32
1991 /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
1992 /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
1993 /// [`SHADER_FLOAT32_ATOMIC`]: crate::valid::Capabilities::SHADER_FLOAT32_ATOMIC
1994 /// [`I64`]: Scalar::I64
1995 /// [`U64`]: Scalar::U64
1996 /// [`F32`]: Scalar::F32
1997 pointer: Handle<Expression>,
1998
1999 /// Function to run on the atomic value.
2000 ///
2001 /// If [`pointer`] refers to a 64-bit atomic value, then:
2002 ///
2003 /// - The [`SHADER_INT64_ATOMIC_ALL_OPS`] capability allows any [`AtomicFunction`]
2004 /// value here.
2005 ///
2006 /// - The [`SHADER_INT64_ATOMIC_MIN_MAX`] capability allows
2007 /// [`AtomicFunction::Min`] and [`AtomicFunction::Max`]
2008 /// in the [`Storage`] address space here.
2009 ///
2010 /// - If neither of those capabilities are present, then 64-bit scalar
2011 /// atomics are not allowed.
2012 ///
2013 /// If [`pointer`] refers to a 32-bit floating-point atomic value, then:
2014 ///
2015 /// - The [`SHADER_FLOAT32_ATOMIC`] capability allows [`AtomicFunction::Add`],
2016 /// [`AtomicFunction::Subtract`], and [`AtomicFunction::Exchange { compare: None }`]
2017 /// in the [`Storage`] address space here.
2018 ///
2019 /// [`AtomicFunction::Exchange { compare: None }`]: AtomicFunction::Exchange
2020 /// [`pointer`]: Statement::Atomic::pointer
2021 /// [`Storage`]: AddressSpace::Storage
2022 /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
2023 /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
2024 /// [`SHADER_FLOAT32_ATOMIC`]: crate::valid::Capabilities::SHADER_FLOAT32_ATOMIC
2025 fun: AtomicFunction,
2026
2027 /// Value to use in the function.
2028 ///
2029 /// This must be a scalar of the same type as [`pointer`]'s atomic's scalar type.
2030 ///
2031 /// [`pointer`]: Statement::Atomic::pointer
2032 value: Handle<Expression>,
2033
2034 /// [`AtomicResult`] expression representing this function's result.
2035 ///
2036 /// If [`fun`] is [`Exchange { compare: None }`], this must be `Some`,
2037 /// as otherwise that operation would be equivalent to a simple [`Store`]
2038 /// to the atomic.
2039 ///
2040 /// Otherwise, this may be `None` if the return value of the operation is not needed.
2041 ///
2042 /// If `pointer` refers to a 64-bit atomic value, [`SHADER_INT64_ATOMIC_MIN_MAX`]
2043 /// is enabled, and [`SHADER_INT64_ATOMIC_ALL_OPS`] is not, this must be `None`.
2044 ///
2045 /// [`AtomicResult`]: crate::Expression::AtomicResult
2046 /// [`fun`]: Statement::Atomic::fun
2047 /// [`Store`]: Statement::Store
2048 /// [`Exchange { compare: None }`]: AtomicFunction::Exchange
2049 /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
2050 /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
2051 result: Option<Handle<Expression>>,
2052 },
2053 /// Performs an atomic operation on a texel value of an image.
2054 ///
2055 /// Doing atomics on images with mipmaps is not supported, so there is no
2056 /// `level` operand.
2057 ImageAtomic {
2058 /// The image to perform an atomic operation on. This must have type
2059 /// [`Image`]. (This will necessarily be a [`GlobalVariable`] or
2060 /// [`FunctionArgument`] expression, since no other expressions are
2061 /// allowed to have that type.)
2062 ///
2063 /// [`Image`]: TypeInner::Image
2064 /// [`GlobalVariable`]: Expression::GlobalVariable
2065 /// [`FunctionArgument`]: Expression::FunctionArgument
2066 image: Handle<Expression>,
2067
2068 /// The coordinate of the texel we wish to load. This must be a scalar
2069 /// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
2070 /// vector for [`D3`] images. (Array indices, sample indices, and
2071 /// explicit level-of-detail values are supplied separately.) Its
2072 /// component type must be [`Sint`].
2073 ///
2074 /// [`D1`]: ImageDimension::D1
2075 /// [`D2`]: ImageDimension::D2
2076 /// [`D3`]: ImageDimension::D3
2077 /// [`Bi`]: VectorSize::Bi
2078 /// [`Tri`]: VectorSize::Tri
2079 /// [`Sint`]: ScalarKind::Sint
2080 coordinate: Handle<Expression>,
2081
2082 /// The index into an arrayed image. If the [`arrayed`] flag in
2083 /// `image`'s type is `true`, then this must be `Some(expr)`, where
2084 /// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
2085 ///
2086 /// [`arrayed`]: TypeInner::Image::arrayed
2087 /// [`Sint`]: ScalarKind::Sint
2088 array_index: Option<Handle<Expression>>,
2089
2090 /// The kind of atomic operation to perform on the texel.
2091 fun: AtomicFunction,
2092
2093 /// The value with which to perform the atomic operation.
2094 value: Handle<Expression>,
2095 },
2096 /// Load uniformly from a uniform pointer in the workgroup address space.
2097 ///
2098 /// Corresponds to the [`workgroupUniformLoad`](https://www.w3.org/TR/WGSL/#workgroupUniformLoad-builtin)
2099 /// built-in function of wgsl, and has the same barrier semantics
2100 WorkGroupUniformLoad {
2101 /// This must be of type [`Pointer`] in the [`WorkGroup`] address space
2102 ///
2103 /// [`Pointer`]: TypeInner::Pointer
2104 /// [`WorkGroup`]: AddressSpace::WorkGroup
2105 pointer: Handle<Expression>,
2106 /// The [`WorkGroupUniformLoadResult`] expression representing this load's result.
2107 ///
2108 /// [`WorkGroupUniformLoadResult`]: Expression::WorkGroupUniformLoadResult
2109 result: Handle<Expression>,
2110 },
2111 /// Calls a function.
2112 ///
2113 /// If the `result` is `Some`, the corresponding expression has to be
2114 /// `Expression::CallResult`, and this statement serves as a barrier for any
2115 /// operations on that expression.
2116 Call {
2117 function: Handle<Function>,
2118 arguments: Vec<Handle<Expression>>,
2119 result: Option<Handle<Expression>>,
2120 },
2121 RayQuery {
2122 /// The [`RayQuery`] object this statement operates on.
2123 ///
2124 /// [`RayQuery`]: TypeInner::RayQuery
2125 query: Handle<Expression>,
2126
2127 /// The specific operation we're performing on `query`.
2128 fun: RayQueryFunction,
2129 },
2130 /// Calculate a bitmask using a boolean from each active thread in the subgroup
2131 SubgroupBallot {
2132 /// The [`SubgroupBallotResult`] expression representing this load's result.
2133 ///
2134 /// [`SubgroupBallotResult`]: Expression::SubgroupBallotResult
2135 result: Handle<Expression>,
2136 /// The value from this thread to store in the ballot
2137 predicate: Option<Handle<Expression>>,
2138 },
2139 /// Gather a value from another active thread in the subgroup
2140 SubgroupGather {
2141 /// Specifies which thread to gather from
2142 mode: GatherMode,
2143 /// The value to broadcast over
2144 argument: Handle<Expression>,
2145 /// The [`SubgroupOperationResult`] expression representing this load's result.
2146 ///
2147 /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
2148 result: Handle<Expression>,
2149 },
2150 /// Compute a collective operation across all active threads in the subgroup
2151 SubgroupCollectiveOperation {
2152 /// What operation to compute
2153 op: SubgroupOperation,
2154 /// How to combine the results
2155 collective_op: CollectiveOperation,
2156 /// The value to compute over
2157 argument: Handle<Expression>,
2158 /// The [`SubgroupOperationResult`] expression representing this load's result.
2159 ///
2160 /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
2161 result: Handle<Expression>,
2162 },
2163}
2164
2165/// A function argument.
2166#[derive(Clone, Debug)]
2167#[cfg_attr(feature = "serialize", derive(Serialize))]
2168#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2169#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2170pub struct FunctionArgument {
2171 /// Name of the argument, if any.
2172 pub name: Option<String>,
2173 /// Type of the argument.
2174 pub ty: Handle<Type>,
2175 /// For entry points, an argument has to have a binding
2176 /// unless it's a structure.
2177 pub binding: Option<Binding>,
2178}
2179
2180/// A function result.
2181#[derive(Clone, Debug)]
2182#[cfg_attr(feature = "serialize", derive(Serialize))]
2183#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2184#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2185pub struct FunctionResult {
2186 /// Type of the result.
2187 pub ty: Handle<Type>,
2188 /// For entry points, the result has to have a binding
2189 /// unless it's a structure.
2190 pub binding: Option<Binding>,
2191}
2192
2193/// A function defined in the module.
2194#[derive(Debug, Default, Clone)]
2195#[cfg_attr(feature = "serialize", derive(Serialize))]
2196#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2197#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2198pub struct Function {
2199 /// Name of the function, if any.
2200 pub name: Option<String>,
2201 /// Information about function argument.
2202 pub arguments: Vec<FunctionArgument>,
2203 /// The result of this function, if any.
2204 pub result: Option<FunctionResult>,
2205 /// Local variables defined and used in the function.
2206 pub local_variables: Arena<LocalVariable>,
2207 /// Expressions used inside this function.
2208 ///
2209 /// Unless explicitly stated otherwise, if an [`Expression`] is in this
2210 /// arena, then its subexpressions are in this arena too. In other words,
2211 /// every `Handle<Expression>` in this arena refers to an [`Expression`] in
2212 /// this arena too.
2213 ///
2214 /// The main ways this arena refers to [`Module::global_expressions`] are:
2215 ///
2216 /// - [`Constant`], [`Override`], and [`GlobalVariable`] expressions hold
2217 /// handles for their respective types, whose initializer expressions are
2218 /// in [`Module::global_expressions`].
2219 ///
2220 /// - Various expressions hold [`Type`] handles, and [`Type`]s may refer to
2221 /// global expressions, for things like array lengths.
2222 ///
2223 /// An [`Expression`] must occur before all other [`Expression`]s that use
2224 /// its value.
2225 ///
2226 /// [`Constant`]: Expression::Constant
2227 /// [`Override`]: Expression::Override
2228 /// [`GlobalVariable`]: Expression::GlobalVariable
2229 pub expressions: Arena<Expression>,
2230 /// Map of expressions that have associated variable names
2231 pub named_expressions: NamedExpressions,
2232 /// Block of instructions comprising the body of the function.
2233 pub body: Block,
2234 /// The leaf of all diagnostic filter rules tree (stored in [`Module::diagnostic_filters`])
2235 /// parsed on this function.
2236 ///
2237 /// In WGSL, this corresponds to `@diagnostic(…)` attributes.
2238 ///
2239 /// See [`DiagnosticFilterNode`] for details on how the tree is represented and used in
2240 /// validation.
2241 pub diagnostic_filter_leaf: Option<Handle<DiagnosticFilterNode>>,
2242}
2243
2244/// The main function for a pipeline stage.
2245///
2246/// An [`EntryPoint`] is a [`Function`] that serves as the main function for a
2247/// graphics or compute pipeline stage. For example, an `EntryPoint` whose
2248/// [`stage`] is [`ShaderStage::Vertex`] can serve as a graphics pipeline's
2249/// vertex shader.
2250///
2251/// Since an entry point is called directly by the graphics or compute pipeline,
2252/// not by other WGSL functions, you must specify what the pipeline should pass
2253/// as the entry point's arguments, and what values it will return. For example,
2254/// a vertex shader needs a vertex's attributes as its arguments, but if it's
2255/// used for instanced draw calls, it will also want to know the instance id.
2256/// The vertex shader's return value will usually include an output vertex
2257/// position, and possibly other attributes to be interpolated and passed along
2258/// to a fragment shader.
2259///
2260/// To specify this, the arguments and result of an `EntryPoint`'s [`function`]
2261/// must each have a [`Binding`], or be structs whose members all have
2262/// `Binding`s. This associates every value passed to or returned from the entry
2263/// point with either a [`BuiltIn`] or a [`Location`]:
2264///
2265/// - A [`BuiltIn`] has special semantics, usually specific to its pipeline
2266/// stage. For example, the result of a vertex shader can include a
2267/// [`BuiltIn::Position`] value, which determines the position of a vertex
2268/// of a rendered primitive. Or, a compute shader might take an argument
2269/// whose binding is [`BuiltIn::WorkGroupSize`], through which the compute
2270/// pipeline would pass the number of invocations in your workgroup.
2271///
2272/// - A [`Location`] indicates user-defined IO to be passed from one pipeline
2273/// stage to the next. For example, a vertex shader might also produce a
2274/// `uv` texture location as a user-defined IO value.
2275///
2276/// In other words, the pipeline stage's input and output interface are
2277/// determined by the bindings of the arguments and result of the `EntryPoint`'s
2278/// [`function`].
2279///
2280/// [`Function`]: crate::Function
2281/// [`Location`]: Binding::Location
2282/// [`function`]: EntryPoint::function
2283/// [`stage`]: EntryPoint::stage
2284#[derive(Debug, Clone)]
2285#[cfg_attr(feature = "serialize", derive(Serialize))]
2286#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2287#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2288pub struct EntryPoint {
2289 /// Name of this entry point, visible externally.
2290 ///
2291 /// Entry point names for a given `stage` must be distinct within a module.
2292 pub name: String,
2293 /// Shader stage.
2294 pub stage: ShaderStage,
2295 /// Early depth test for fragment stages.
2296 pub early_depth_test: Option<EarlyDepthTest>,
2297 /// Workgroup size for compute stages
2298 pub workgroup_size: [u32; 3],
2299 /// Override expressions for workgroup size in the global_expressions arena
2300 pub workgroup_size_overrides: Option<[Option<Handle<Expression>>; 3]>,
2301 /// The entrance function.
2302 pub function: Function,
2303}
2304
2305/// Return types predeclared for the frexp, modf, and atomicCompareExchangeWeak built-in functions.
2306///
2307/// These cannot be spelled in WGSL source.
2308///
2309/// Stored in [`SpecialTypes::predeclared_types`] and created by [`Module::generate_predeclared_type`].
2310#[derive(Debug, PartialEq, Eq, Hash, Clone)]
2311#[cfg_attr(feature = "serialize", derive(Serialize))]
2312#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2313#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2314pub enum PredeclaredType {
2315 AtomicCompareExchangeWeakResult(Scalar),
2316 ModfResult {
2317 size: Option<VectorSize>,
2318 scalar: Scalar,
2319 },
2320 FrexpResult {
2321 size: Option<VectorSize>,
2322 scalar: Scalar,
2323 },
2324}
2325
2326/// Set of special types that can be optionally generated by the frontends.
2327#[derive(Debug, Default, Clone)]
2328#[cfg_attr(feature = "serialize", derive(Serialize))]
2329#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2330#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2331pub struct SpecialTypes {
2332 /// Type for `RayDesc`.
2333 ///
2334 /// Call [`Module::generate_ray_desc_type`] to populate this if
2335 /// needed and return the handle.
2336 pub ray_desc: Option<Handle<Type>>,
2337
2338 /// Type for `RayIntersection`.
2339 ///
2340 /// Call [`Module::generate_ray_intersection_type`] to populate
2341 /// this if needed and return the handle.
2342 pub ray_intersection: Option<Handle<Type>>,
2343
2344 /// Type for `RayVertexReturn`.
2345 ///
2346 /// Call [`Module::generate_vertex_return_type`]
2347 pub ray_vertex_return: Option<Handle<Type>>,
2348
2349 /// Types for predeclared wgsl types instantiated on demand.
2350 ///
2351 /// Call [`Module::generate_predeclared_type`] to populate this if
2352 /// needed and return the handle.
2353 pub predeclared_types: FastIndexMap<PredeclaredType, Handle<Type>>,
2354}
2355
2356bitflags::bitflags! {
2357 /// Ray flags used when casting rays.
2358 /// Matching vulkan constants can be found in
2359 /// https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/ray_common/ray_flags_section.txt
2360 #[cfg_attr(feature = "serialize", derive(Serialize))]
2361 #[cfg_attr(feature = "deserialize", derive(Deserialize))]
2362 #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2363 #[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
2364 pub struct RayFlag: u32 {
2365 /// Force all intersections to be treated as opaque.
2366 const FORCE_OPAQUE = 0x1;
2367 /// Force all intersections to be treated as non-opaque.
2368 const FORCE_NO_OPAQUE = 0x2;
2369 /// Stop traversal after the first hit.
2370 const TERMINATE_ON_FIRST_HIT = 0x4;
2371 /// Don't execute the closest hit shader.
2372 const SKIP_CLOSEST_HIT_SHADER = 0x8;
2373 /// Cull back facing geometry.
2374 const CULL_BACK_FACING = 0x10;
2375 /// Cull front facing geometry.
2376 const CULL_FRONT_FACING = 0x20;
2377 /// Cull opaque geometry.
2378 const CULL_OPAQUE = 0x40;
2379 /// Cull non-opaque geometry.
2380 const CULL_NO_OPAQUE = 0x80;
2381 /// Skip triangular geometry.
2382 const SKIP_TRIANGLES = 0x100;
2383 /// Skip axis-aligned bounding boxes.
2384 const SKIP_AABBS = 0x200;
2385 }
2386}
2387
2388/// Type of a ray query intersection.
2389/// Matching vulkan constants can be found in
2390/// <https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_ray_query.asciidoc>
2391/// but the actual values are different for candidate intersections.
2392#[cfg_attr(feature = "serialize", derive(Serialize))]
2393#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2394#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2395#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
2396pub enum RayQueryIntersection {
2397 /// No intersection found.
2398 /// Matches `RayQueryCommittedIntersectionNoneKHR`.
2399 #[default]
2400 None = 0,
2401 /// Intersecting with triangles.
2402 /// Matches `RayQueryCommittedIntersectionTriangleKHR` and `RayQueryCandidateIntersectionTriangleKHR`.
2403 Triangle = 1,
2404 /// Intersecting with generated primitives.
2405 /// Matches `RayQueryCommittedIntersectionGeneratedKHR`.
2406 Generated = 2,
2407 /// Intersecting with Axis Aligned Bounding Boxes.
2408 /// Matches `RayQueryCandidateIntersectionAABBKHR`.
2409 Aabb = 3,
2410}
2411
2412/// Doc comments preceding items.
2413///
2414/// These can be used to generate automated documentation,
2415/// IDE hover information or translate shaders with their context comments.
2416#[derive(Debug, Default, Clone)]
2417#[cfg_attr(feature = "serialize", derive(Serialize))]
2418#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2419#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2420pub struct DocComments {
2421 pub types: FastIndexMap<Handle<Type>, Vec<String>>,
2422 // The key is:
2423 // - key.0: the handle to the Struct
2424 // - key.1: the index of the `StructMember`.
2425 pub struct_members: FastIndexMap<(Handle<Type>, usize), Vec<String>>,
2426 pub entry_points: FastIndexMap<usize, Vec<String>>,
2427 pub functions: FastIndexMap<Handle<Function>, Vec<String>>,
2428 pub constants: FastIndexMap<Handle<Constant>, Vec<String>>,
2429 pub global_variables: FastIndexMap<Handle<GlobalVariable>, Vec<String>>,
2430 // Top level comments, appearing before any space.
2431 pub module: Vec<String>,
2432}
2433
2434/// Shader module.
2435///
2436/// A module is a set of constants, global variables and functions, as well as
2437/// the types required to define them.
2438///
2439/// Some functions are marked as entry points, to be used in a certain shader stage.
2440///
2441/// To create a new module, use the `Default` implementation.
2442/// Alternatively, you can load an existing shader using one of the [available front ends].
2443///
2444/// When finished, you can export modules using one of the [available backends].
2445///
2446/// ## Module arenas
2447///
2448/// Most module contents are stored in [`Arena`]s. In a valid module, arena
2449/// elements only refer to prior arena elements. That is, whenever an element in
2450/// some `Arena<T>` contains a `Handle<T>` referring to another element the same
2451/// arena, the handle's referent always precedes the element containing the
2452/// handle.
2453///
2454/// The elements of [`Module::types`] may refer to [`Expression`]s in
2455/// [`Module::global_expressions`], and those expressions may in turn refer back
2456/// to [`Type`]s in [`Module::types`]. In a valid module, there exists an order
2457/// in which all types and global expressions can be visited such that:
2458///
2459/// - types and expressions are visited in the order in which they appear in
2460/// their arenas, and
2461///
2462/// - every element refers only to previously visited elements.
2463///
2464/// This implies that the graph of types and global expressions is acyclic.
2465/// (However, it is a stronger condition: there are cycle-free arrangements of
2466/// types and expressions for which an order like the one described above does
2467/// not exist. Modules arranged in such a way are not valid.)
2468///
2469/// [available front ends]: crate::front
2470/// [available backends]: crate::back
2471#[derive(Debug, Default, Clone)]
2472#[cfg_attr(feature = "serialize", derive(Serialize))]
2473#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2474#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2475pub struct Module {
2476 /// Arena for the types defined in this module.
2477 ///
2478 /// See the [`Module`] docs for more details about this field.
2479 pub types: UniqueArena<Type>,
2480 /// Dictionary of special type handles.
2481 pub special_types: SpecialTypes,
2482 /// Arena for the constants defined in this module.
2483 pub constants: Arena<Constant>,
2484 /// Arena for the pipeline-overridable constants defined in this module.
2485 pub overrides: Arena<Override>,
2486 /// Arena for the global variables defined in this module.
2487 pub global_variables: Arena<GlobalVariable>,
2488 /// [Constant expressions] and [override expressions] used by this module.
2489 ///
2490 /// If an expression is in this arena, then its subexpressions are in this
2491 /// arena too. In other words, every `Handle<Expression>` in this arena
2492 /// refers to an [`Expression`] in this arena too.
2493 ///
2494 /// See the [`Module`] docs for more details about this field.
2495 ///
2496 /// [Constant expressions]: index.html#constant-expressions
2497 /// [override expressions]: index.html#override-expressions
2498 pub global_expressions: Arena<Expression>,
2499 /// Arena for the functions defined in this module.
2500 ///
2501 /// Each function must appear in this arena strictly before all its callers.
2502 /// Recursion is not supported.
2503 pub functions: Arena<Function>,
2504 /// Entry points.
2505 pub entry_points: Vec<EntryPoint>,
2506 /// Arena for all diagnostic filter rules parsed in this module, including those in functions
2507 /// and statements.
2508 ///
2509 /// This arena contains elements of a _tree_ of diagnostic filter rules. When nodes are built
2510 /// by a front-end, they refer to a parent scope
2511 pub diagnostic_filters: Arena<DiagnosticFilterNode>,
2512 /// The leaf of all diagnostic filter rules tree parsed from directives in this module.
2513 ///
2514 /// In WGSL, this corresponds to `diagnostic(…);` directives.
2515 ///
2516 /// See [`DiagnosticFilterNode`] for details on how the tree is represented and used in
2517 /// validation.
2518 pub diagnostic_filter_leaf: Option<Handle<DiagnosticFilterNode>>,
2519 /// Doc comments.
2520 pub doc_comments: Option<Box<DocComments>>,
2521}