1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
use crate::arena::Handle;
use std::{fmt::Display, num::NonZeroU32, ops};

/// A newtype struct where its only valid values are powers of 2
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct Alignment(NonZeroU32);

impl Alignment {
    pub const ONE: Self = Self(unsafe { NonZeroU32::new_unchecked(1) });
    pub const TWO: Self = Self(unsafe { NonZeroU32::new_unchecked(2) });
    pub const FOUR: Self = Self(unsafe { NonZeroU32::new_unchecked(4) });
    pub const EIGHT: Self = Self(unsafe { NonZeroU32::new_unchecked(8) });
    pub const SIXTEEN: Self = Self(unsafe { NonZeroU32::new_unchecked(16) });

    pub const MIN_UNIFORM: Self = Self::SIXTEEN;

    pub const fn new(n: u32) -> Option<Self> {
        if n.is_power_of_two() {
            // SAFETY: value can't be 0 since we just checked if it's a power of 2
            Some(Self(unsafe { NonZeroU32::new_unchecked(n) }))
        } else {
            None
        }
    }

    /// # Panics
    /// If `width` is not a power of 2
    pub fn from_width(width: u8) -> Self {
        Self::new(width as u32).unwrap()
    }

    /// Returns whether or not `n` is a multiple of this alignment.
    pub const fn is_aligned(&self, n: u32) -> bool {
        // equivalent to: `n % self.0.get() == 0` but much faster
        n & (self.0.get() - 1) == 0
    }

    /// Round `n` up to the nearest alignment boundary.
    pub const fn round_up(&self, n: u32) -> u32 {
        // equivalent to:
        // match n % self.0.get() {
        //     0 => n,
        //     rem => n + (self.0.get() - rem),
        // }
        let mask = self.0.get() - 1;
        (n + mask) & !mask
    }
}

impl Display for Alignment {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.get().fmt(f)
    }
}

impl ops::Mul<u32> for Alignment {
    type Output = u32;

    fn mul(self, rhs: u32) -> Self::Output {
        self.0.get() * rhs
    }
}

impl ops::Mul for Alignment {
    type Output = Alignment;

    fn mul(self, rhs: Alignment) -> Self::Output {
        // SAFETY: both lhs and rhs are powers of 2, the result will be a power of 2
        Self(unsafe { NonZeroU32::new_unchecked(self.0.get() * rhs.0.get()) })
    }
}

impl From<crate::VectorSize> for Alignment {
    fn from(size: crate::VectorSize) -> Self {
        match size {
            crate::VectorSize::Bi => Alignment::TWO,
            crate::VectorSize::Tri => Alignment::FOUR,
            crate::VectorSize::Quad => Alignment::FOUR,
        }
    }
}

/// Size and alignment information for a type.
#[derive(Clone, Copy, Debug, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct TypeLayout {
    pub size: u32,
    pub alignment: Alignment,
}

impl TypeLayout {
    /// Produce the stride as if this type is a base of an array.
    pub const fn to_stride(&self) -> u32 {
        self.alignment.round_up(self.size)
    }
}

/// Helper processor that derives the sizes of all types.
///
/// `Layouter` uses the default layout algorithm/table, described in
/// [WGSL §4.3.7, "Memory Layout"]
///
/// A `Layouter` may be indexed by `Handle<Type>` values: `layouter[handle]` is the
/// layout of the type whose handle is `handle`.
///
/// [WGSL §4.3.7, "Memory Layout"](https://gpuweb.github.io/gpuweb/wgsl/#memory-layouts)
#[derive(Debug, Default)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct Layouter {
    /// Layouts for types in an arena, indexed by `Handle` index.
    layouts: Vec<TypeLayout>,
}

impl ops::Index<Handle<crate::Type>> for Layouter {
    type Output = TypeLayout;
    fn index(&self, handle: Handle<crate::Type>) -> &TypeLayout {
        &self.layouts[handle.index()]
    }
}

#[derive(Clone, Copy, Debug, PartialEq, thiserror::Error)]
pub enum LayoutErrorInner {
    #[error("Array element type {0:?} doesn't exist")]
    InvalidArrayElementType(Handle<crate::Type>),
    #[error("Struct member[{0}] type {1:?} doesn't exist")]
    InvalidStructMemberType(u32, Handle<crate::Type>),
    #[error("Type width must be a power of two")]
    NonPowerOfTwoWidth,
}

#[derive(Clone, Copy, Debug, PartialEq, thiserror::Error)]
#[error("Error laying out type {ty:?}: {inner}")]
pub struct LayoutError {
    pub ty: Handle<crate::Type>,
    pub inner: LayoutErrorInner,
}

impl LayoutErrorInner {
    const fn with(self, ty: Handle<crate::Type>) -> LayoutError {
        LayoutError { ty, inner: self }
    }
}

impl Layouter {
    /// Remove all entries from this `Layouter`, retaining storage.
    pub fn clear(&mut self) {
        self.layouts.clear();
    }

    /// Extend this `Layouter` with layouts for any new entries in `gctx.types`.
    ///
    /// Ensure that every type in `gctx.types` has a corresponding [TypeLayout]
    /// in [`self.layouts`].
    ///
    /// Some front ends need to be able to compute layouts for existing types
    /// while module construction is still in progress and new types are still
    /// being added. This function assumes that the `TypeLayout` values already
    /// present in `self.layouts` cover their corresponding entries in `types`,
    /// and extends `self.layouts` as needed to cover the rest. Thus, a front
    /// end can call this function at any time, passing its current type and
    /// constant arenas, and then assume that layouts are available for all
    /// types.
    #[allow(clippy::or_fun_call)]
    pub fn update(&mut self, gctx: super::GlobalCtx) -> Result<(), LayoutError> {
        use crate::TypeInner as Ti;

        for (ty_handle, ty) in gctx.types.iter().skip(self.layouts.len()) {
            let size = ty.inner.size(gctx);
            let layout = match ty.inner {
                Ti::Scalar(scalar) | Ti::Atomic(scalar) => {
                    let alignment = Alignment::new(scalar.width as u32)
                        .ok_or(LayoutErrorInner::NonPowerOfTwoWidth.with(ty_handle))?;
                    TypeLayout { size, alignment }
                }
                Ti::Vector {
                    size: vec_size,
                    scalar,
                } => {
                    let alignment = Alignment::new(scalar.width as u32)
                        .ok_or(LayoutErrorInner::NonPowerOfTwoWidth.with(ty_handle))?;
                    TypeLayout {
                        size,
                        alignment: Alignment::from(vec_size) * alignment,
                    }
                }
                Ti::Matrix {
                    columns: _,
                    rows,
                    scalar,
                } => {
                    let alignment = Alignment::new(scalar.width as u32)
                        .ok_or(LayoutErrorInner::NonPowerOfTwoWidth.with(ty_handle))?;
                    TypeLayout {
                        size,
                        alignment: Alignment::from(rows) * alignment,
                    }
                }
                Ti::Pointer { .. } | Ti::ValuePointer { .. } => TypeLayout {
                    size,
                    alignment: Alignment::ONE,
                },
                Ti::Array {
                    base,
                    stride: _,
                    size: _,
                } => TypeLayout {
                    size,
                    alignment: if base < ty_handle {
                        self[base].alignment
                    } else {
                        return Err(LayoutErrorInner::InvalidArrayElementType(base).with(ty_handle));
                    },
                },
                Ti::Struct { span, ref members } => {
                    let mut alignment = Alignment::ONE;
                    for (index, member) in members.iter().enumerate() {
                        alignment = if member.ty < ty_handle {
                            alignment.max(self[member.ty].alignment)
                        } else {
                            return Err(LayoutErrorInner::InvalidStructMemberType(
                                index as u32,
                                member.ty,
                            )
                            .with(ty_handle));
                        };
                    }
                    TypeLayout {
                        size: span,
                        alignment,
                    }
                }
                Ti::Image { .. }
                | Ti::Sampler { .. }
                | Ti::AccelerationStructure
                | Ti::RayQuery
                | Ti::BindingArray { .. } => TypeLayout {
                    size,
                    alignment: Alignment::ONE,
                },
            };
            debug_assert!(size <= layout.size);
            self.layouts.push(layout);
        }

        Ok(())
    }
}