wgpu_examples/big_compute_buffers/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//! This example shows you a potential course for when your 'data' is too large
//! for a single Buffer.
//!
//! A lot of things aren't explained here via comments. See hello-compute and
//! repeated-compute for code that is more thoroughly commented.

use std::num::NonZeroU32;
use wgpu::{util::DeviceExt, Features};

// These are set by the minimum required defaults for webgpu.
const MAX_BUFFER_SIZE: u64 = 1 << 27; // 134_217_728 // 134MB
const MAX_DISPATCH_SIZE: u32 = (1 << 16) - 1;

pub async fn execute_gpu(numbers: &[f32]) -> Vec<f32> {
    let instance = wgpu::Instance::default();

    let adapter = instance
        .request_adapter(&wgpu::RequestAdapterOptions::default())
        .await
        .unwrap();

    let (device, queue) = adapter
        .request_device(&wgpu::DeviceDescriptor {
            label: None,
            // These features are required to use `binding_array` in your wgsl.
            // Without them your shader may fail to compile.
            required_features: Features::BUFFER_BINDING_ARRAY
                | Features::STORAGE_RESOURCE_BINDING_ARRAY
                | Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING,
            memory_hints: wgpu::MemoryHints::Performance,
            required_limits: wgpu::Limits {
                max_buffer_size: MAX_BUFFER_SIZE,
                max_binding_array_elements_per_shader_stage: 8,
                ..Default::default()
            },
            ..Default::default()
        })
        .await
        .unwrap();

    execute_gpu_inner(&device, &queue, numbers).await
}

pub async fn execute_gpu_inner(
    device: &wgpu::Device,
    queue: &wgpu::Queue,
    numbers: &[f32],
) -> Vec<f32> {
    let (staging_buffers, storage_buffers, bind_group, compute_pipeline) = setup(device, numbers);

    let mut encoder =
        device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
    {
        let mut cpass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
            label: Some("compute pass descriptor"),
            timestamp_writes: None,
        });
        cpass.set_pipeline(&compute_pipeline);
        cpass.set_bind_group(0, Some(&bind_group), &[]);

        cpass.dispatch_workgroups(MAX_DISPATCH_SIZE.min(numbers.len() as u32), 1, 1);
    }

    for (storage_buffer, staging_buffer) in storage_buffers.iter().zip(staging_buffers.iter()) {
        let stg_size = staging_buffer.size();

        encoder.copy_buffer_to_buffer(
            storage_buffer, // Source buffer
            0,
            staging_buffer, // Destination buffer
            0,
            stg_size,
        );
    }

    queue.submit(Some(encoder.finish()));

    for staging_buffer in &staging_buffers {
        let slice = staging_buffer.slice(..);
        slice.map_async(wgpu::MapMode::Read, |_| {});
    }

    device.poll(wgpu::PollType::Wait).unwrap();

    let mut data = Vec::new();
    for staging_buffer in &staging_buffers {
        let slice = staging_buffer.slice(..);
        let mapped = slice.get_mapped_range();
        data.extend_from_slice(bytemuck::cast_slice(&mapped));
        drop(mapped);
        staging_buffer.unmap();
    }

    data
}

fn setup(
    device: &wgpu::Device,
    numbers: &[f32],
) -> (
    Vec<wgpu::Buffer>,
    Vec<wgpu::Buffer>,
    wgpu::BindGroup,
    wgpu::ComputePipeline,
) {
    let cs_module = device.create_shader_module(wgpu::include_wgsl!("shader.wgsl"));

    let staging_buffers = create_staging_buffers(device, numbers);
    let storage_buffers = create_storage_buffers(device, numbers);

    let (bind_group_layout, bind_group) = setup_binds(&storage_buffers, device);

    let compute_pipeline = setup_pipeline(device, bind_group_layout, cs_module);
    (
        staging_buffers,
        storage_buffers,
        bind_group,
        compute_pipeline,
    )
}

fn setup_pipeline(
    device: &wgpu::Device,
    bind_group_layout: wgpu::BindGroupLayout,
    cs_module: wgpu::ShaderModule,
) -> wgpu::ComputePipeline {
    let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
        label: Some("Compute Pipeline Layout"),
        bind_group_layouts: &[&bind_group_layout],
        push_constant_ranges: &[],
    });

    device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
        label: Some("Compute Pipeline"),
        layout: Some(&pipeline_layout),
        module: &cs_module,
        entry_point: Some("main"),
        compilation_options: Default::default(),
        cache: None,
    })
}

fn setup_binds(
    storage_buffers: &[wgpu::Buffer],
    device: &wgpu::Device,
) -> (wgpu::BindGroupLayout, wgpu::BindGroup) {
    let bind_group_entries: Vec<wgpu::BindGroupEntry> = storage_buffers
        .iter()
        .enumerate()
        .map(|(bind_idx, buffer)| wgpu::BindGroupEntry {
            binding: bind_idx as u32,
            resource: buffer.as_entire_binding(),
        })
        .collect();

    let bind_group_layout_entries: Vec<wgpu::BindGroupLayoutEntry> = (0..storage_buffers.len())
        .map(|bind_idx| wgpu::BindGroupLayoutEntry {
            binding: bind_idx as u32,
            visibility: wgpu::ShaderStages::COMPUTE,
            ty: wgpu::BindingType::Buffer {
                ty: wgpu::BufferBindingType::Storage { read_only: false },
                has_dynamic_offset: false,
                min_binding_size: None,
            },
            count: Some(NonZeroU32::new(1).unwrap()),
        })
        .collect();

    let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
        label: Some("Custom Storage Bind Group Layout"),
        entries: &bind_group_layout_entries,
    });

    let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
        label: Some("Combined Storage Bind Group"),
        layout: &bind_group_layout,
        entries: &bind_group_entries,
    });

    (bind_group_layout, bind_group)
}

fn calculate_chunks(numbers: &[f32], max_buffer_size: u64) -> Vec<&[f32]> {
    let max_elements_per_chunk = max_buffer_size as usize / std::mem::size_of::<f32>();
    numbers.chunks(max_elements_per_chunk).collect()
}

fn create_storage_buffers(device: &wgpu::Device, numbers: &[f32]) -> Vec<wgpu::Buffer> {
    let chunks = calculate_chunks(numbers, MAX_BUFFER_SIZE);

    chunks
        .iter()
        .enumerate()
        .map(|(e, seg)| {
            device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
                label: Some(&format!("Storage Buffer-{}", e)),
                contents: bytemuck::cast_slice(seg),
                usage: wgpu::BufferUsages::STORAGE
                    | wgpu::BufferUsages::COPY_DST
                    | wgpu::BufferUsages::COPY_SRC,
            })
        })
        .collect()
}

fn create_staging_buffers(device: &wgpu::Device, numbers: &[f32]) -> Vec<wgpu::Buffer> {
    let chunks = calculate_chunks(numbers, MAX_BUFFER_SIZE);

    (0..chunks.len())
        .map(|e| {
            let size = std::mem::size_of_val(chunks[e]) as u64;

            device.create_buffer(&wgpu::BufferDescriptor {
                label: Some(&format!("staging buffer-{}", e)),
                size,
                usage: wgpu::BufferUsages::MAP_READ | wgpu::BufferUsages::COPY_DST,
                mapped_at_creation: false,
            })
        })
        .collect()
}

#[cfg_attr(target_arch = "wasm32", allow(clippy::allow_attributes, dead_code))]
async fn run() {
    let numbers = {
        const BYTES_PER_GB: usize = 1024 * 1024 * 1024;
        // 4 bytes per f32
        let elements = (BYTES_PER_GB as f32 / 4.0) as usize;
        vec![0.0; elements]
    };
    assert!(numbers.iter().all(|n| *n == 0.0));
    log::info!("All 0.0s");
    let t1 = std::time::Instant::now();
    let results = execute_gpu(&numbers).await;
    log::info!("GPU RUNTIME: {}ms", t1.elapsed().as_millis());
    assert_eq!(numbers.len(), results.len());
    assert!(results.iter().all(|n| *n == 1.0));
    log::info!("All 1.0s");
}

pub fn main() {
    #[cfg(not(target_arch = "wasm32"))]
    {
        env_logger::init();
        pollster::block_on(run());
    }
}

#[cfg(test)]
#[cfg(not(target_arch = "wasm32"))]
mod tests;