naga/back/hlsl/mod.rs
1/*!
2Backend for [HLSL][hlsl] (High-Level Shading Language).
3
4# Supported shader model versions:
5- 5.0
6- 5.1
7- 6.0
8
9# Layout of values in `uniform` buffers
10
11WGSL's ["Internal Layout of Values"][ilov] rules specify how each WGSL
12type should be stored in `uniform` and `storage` buffers. The HLSL we
13generate must access values in that form, even when it is not what
14HLSL would use normally.
15
16Matching the WGSL memory layout is a concern only for `uniform`
17variables. WGSL `storage` buffers are translated as HLSL
18`ByteAddressBuffers`, for which we generate `Load` and `Store` method
19calls with explicit byte offsets. WGSL pipeline inputs must be scalars
20or vectors; they cannot be matrices, which is where the interesting
21problems arise. However, when an affected type appears in a struct
22definition, the transformations described here are applied without
23consideration of where the struct is used.
24
25Access to storage buffers is implemented in `storage.rs`. Access to
26uniform buffers is implemented where applicable in `writer.rs`.
27
28## Row- and column-major ordering for matrices
29
30WGSL specifies that matrices in uniform buffers are stored in
31column-major order. This matches HLSL's default, so one might expect
32things to be straightforward. Unfortunately, WGSL and HLSL disagree on
33what indexing a matrix means: in WGSL, `m[i]` retrieves the `i`'th
34*column* of `m`, whereas in HLSL it retrieves the `i`'th *row*. We
35want to avoid translating `m[i]` into some complicated reassembly of a
36vector from individually fetched components, so this is a problem.
37
38However, with a bit of trickery, it is possible to use HLSL's `m[i]`
39as the translation of WGSL's `m[i]`:
40
41- We declare all matrices in uniform buffers in HLSL with the
42 `row_major` qualifier, and transpose the row and column counts: a
43 WGSL `mat3x4<f32>`, say, becomes an HLSL `row_major float3x4`. (Note
44 that WGSL and HLSL type names put the row and column in reverse
45 order.) Since the HLSL type is the transpose of how WebGPU directs
46 the user to store the data, HLSL will load all matrices transposed.
47
48- Since matrices are transposed, an HLSL indexing expression retrieves
49 the "columns" of the intended WGSL value, as desired.
50
51- For vector-matrix multiplication, since `mul(transpose(m), v)` is
52 equivalent to `mul(v, m)` (note the reversal of the arguments), and
53 `mul(v, transpose(m))` is equivalent to `mul(m, v)`, we can
54 translate WGSL `m * v` and `v * m` to HLSL by simply reversing the
55 arguments to `mul`.
56
57## Padding in two-row matrices
58
59An HLSL `row_major floatKx2` matrix has padding between its rows that
60the WGSL `matKx2<f32>` matrix it represents does not. HLSL stores all
61matrix rows [aligned on 16-byte boundaries][16bb], whereas WGSL says
62that the columns of a `matKx2<f32>` need only be [aligned as required
63for `vec2<f32>`][ilov], which is [eight-byte alignment][8bb].
64
65To compensate for this, any time a `matKx2<f32>` appears in a WGSL
66`uniform` value or as part of a struct/array, we actually emit `K`
67separate `float2` members, and assemble/disassemble the matrix from its
68columns (in WGSL; rows in HLSL) upon load and store.
69
70For example, the following WGSL struct type:
71
72```ignore
73struct Baz {
74 m: mat3x2<f32>,
75}
76```
77
78is rendered as the HLSL struct type:
79
80```ignore
81struct Baz {
82 float2 m_0; float2 m_1; float2 m_2;
83};
84```
85
86The `wrapped_struct_matrix` functions in `help.rs` generate HLSL
87helper functions to access such members, converting between the stored
88form and the HLSL matrix types appropriately. For example, for reading
89the member `m` of the `Baz` struct above, we emit:
90
91```ignore
92float3x2 GetMatmOnBaz(Baz obj) {
93 return float3x2(obj.m_0, obj.m_1, obj.m_2);
94}
95```
96
97We also emit an analogous `Set` function, as well as functions for
98accessing individual columns by dynamic index.
99
100## Sampler Handling
101
102Due to limitations in how sampler heaps work in D3D12, we need to access samplers
103through a layer of indirection. Instead of directly binding samplers, we bind the entire
104sampler heap as both a standard and a comparison sampler heap. We then use a sampler
105index buffer for each bind group. This buffer is accessed in the shader to get the actual
106sampler index within the heap. See the wgpu_hal dx12 backend documentation for more
107information.
108
109# External textures
110
111Support for [`crate::ImageClass::External`] textures is implemented by lowering
112each external texture global variable to 3 `Texture2D<float4>`s, and a `cbuffer`
113of type `NagaExternalTextureParams`. This provides up to 3 planes of texture
114data (for example single planar RGBA, or separate Y, Cb, and Cr planes), and the
115parameters buffer containing information describing how to handle these
116correctly. The bind target to use for each of these globals is specified via
117[`Options::external_texture_binding_map`].
118
119External textures are supported by WGSL's `textureDimensions()`,
120`textureLoad()`, and `textureSampleBaseClampToEdge()` built-in functions. These
121are implemented using helper functions. See the following functions for how
122these are generated:
123 * `Writer::write_wrapped_image_query_function`
124 * `Writer::write_wrapped_image_load_function`
125 * `Writer::write_wrapped_image_sample_function`
126
127Ideally the set of global variables could be wrapped in a single struct that
128could conveniently be passed around. But, alas, HLSL does not allow structs to
129have `Texture2D` members. Fortunately, however, external textures can only be
130used as arguments to either built-in or user-defined functions. We therefore
131expand any external texture function argument to four consecutive arguments (3
132textures and the params struct) when declaring user-defined functions, and
133ensure our built-in function implementations take the same arguments. Then,
134whenever we need to emit an external texture in `Writer::write_expr`, which
135fortunately can only ever be for a global variable or function argument, we
136simply emit the variable name of each of the three textures and the parameters
137struct in a comma-separated list. This won't win any awards for elegance, but
138it works for our purposes.
139
140[hlsl]: https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
141[ilov]: https://gpuweb.github.io/gpuweb/wgsl/#internal-value-layout
142[16bb]: https://github.com/microsoft/DirectXShaderCompiler/wiki/Buffer-Packing#constant-buffer-packing
143[8bb]: https://gpuweb.github.io/gpuweb/wgsl/#alignment-and-size
144*/
145
146mod conv;
147mod help;
148mod keywords;
149mod ray;
150mod storage;
151mod writer;
152
153use alloc::{string::String, vec::Vec};
154use core::fmt::Error as FmtError;
155
156use thiserror::Error;
157
158use crate::{back, ir, proc};
159
160/// Direct3D 12 binding information for a global variable.
161///
162/// This type provides the HLSL-specific information Naga needs to declare and
163/// access an HLSL global variable that cannot be derived from the `Module`
164/// itself.
165///
166/// An HLSL global variable declaration includes details that the Direct3D API
167/// will use to refer to it. For example:
168///
169/// RWByteAddressBuffer s_sasm : register(u0, space2);
170///
171/// This defines a global `s_sasm` that a Direct3D root signature would refer to
172/// as register `0` in register space `2` in a `UAV` descriptor range. Naga can
173/// infer the register's descriptor range type from the variable's address class
174/// (writable [`Storage`] variables are implemented by Direct3D Unordered Access
175/// Views, the `u` register type), but the register number and register space
176/// must be supplied by the user.
177///
178/// The [`back::hlsl::Options`] structure provides `BindTarget`s for various
179/// situations in which Naga may need to generate an HLSL global variable, like
180/// [`binding_map`] for Naga global variables, or [`immediates_target`] for
181/// a module's sole [`Immediate`] variable. See those fields' documentation
182/// for details.
183///
184/// [`Storage`]: crate::ir::AddressSpace::Storage
185/// [`back::hlsl::Options`]: Options
186/// [`binding_map`]: Options::binding_map
187/// [`immediates_target`]: Options::immediates_target
188/// [`Immediate`]: crate::ir::AddressSpace::Immediate
189#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
190#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
191#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
192pub struct BindTarget {
193 pub space: u8,
194 /// For regular bindings this is the register number.
195 ///
196 /// For sampler bindings, this is the index to use into the bind group's sampler index buffer.
197 pub register: u32,
198 /// If the binding is an unsized binding array, this overrides the size.
199 pub binding_array_size: Option<u32>,
200 /// This is the index in the buffer at [`Options::dynamic_storage_buffer_offsets_targets`].
201 pub dynamic_storage_buffer_offsets_index: Option<u32>,
202 /// This is a hint that we need to restrict indexing of vectors, matrices and arrays.
203 ///
204 /// If [`Options::restrict_indexing`] is also `true`, we will restrict indexing.
205 #[cfg_attr(any(feature = "serialize", feature = "deserialize"), serde(default))]
206 pub restrict_indexing: bool,
207}
208
209#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
210#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
211#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
212/// BindTarget for dynamic storage buffer offsets
213pub struct OffsetsBindTarget {
214 pub space: u8,
215 pub register: u32,
216 pub size: u32,
217}
218
219#[cfg(feature = "deserialize")]
220#[derive(serde::Deserialize)]
221struct BindingMapSerialization {
222 resource_binding: crate::ResourceBinding,
223 bind_target: BindTarget,
224}
225
226#[cfg(feature = "deserialize")]
227fn deserialize_binding_map<'de, D>(deserializer: D) -> Result<BindingMap, D::Error>
228where
229 D: serde::Deserializer<'de>,
230{
231 use serde::Deserialize;
232
233 let vec = Vec::<BindingMapSerialization>::deserialize(deserializer)?;
234 let mut map = BindingMap::default();
235 for item in vec {
236 map.insert(item.resource_binding, item.bind_target);
237 }
238 Ok(map)
239}
240
241// Using `BTreeMap` instead of `HashMap` so that we can hash itself.
242pub type BindingMap = alloc::collections::BTreeMap<crate::ResourceBinding, BindTarget>;
243
244/// A HLSL shader model version.
245#[allow(non_snake_case, non_camel_case_types)]
246#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd)]
247#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
248#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
249pub enum ShaderModel {
250 V5_0,
251 V5_1,
252 V6_0,
253 V6_1,
254 V6_2,
255 V6_3,
256 V6_4,
257 V6_5,
258 V6_6,
259 V6_7,
260}
261
262impl ShaderModel {
263 pub const fn to_str(self) -> &'static str {
264 match self {
265 Self::V5_0 => "5_0",
266 Self::V5_1 => "5_1",
267 Self::V6_0 => "6_0",
268 Self::V6_1 => "6_1",
269 Self::V6_2 => "6_2",
270 Self::V6_3 => "6_3",
271 Self::V6_4 => "6_4",
272 Self::V6_5 => "6_5",
273 Self::V6_6 => "6_6",
274 Self::V6_7 => "6_7",
275 }
276 }
277}
278
279impl crate::ShaderStage {
280 pub const fn to_hlsl_str(self) -> &'static str {
281 match self {
282 Self::Vertex => "vs",
283 Self::Fragment => "ps",
284 Self::Compute => "cs",
285 Self::Task => "as",
286 Self::Mesh => "ms",
287 }
288 }
289}
290
291impl crate::ImageDimension {
292 const fn to_hlsl_str(self) -> &'static str {
293 match self {
294 Self::D1 => "1D",
295 Self::D2 => "2D",
296 Self::D3 => "3D",
297 Self::Cube => "Cube",
298 }
299 }
300}
301
302#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
303#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
304#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
305pub struct SamplerIndexBufferKey {
306 pub group: u32,
307}
308
309#[derive(Clone, Debug, Hash, PartialEq, Eq)]
310#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
311#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
312#[cfg_attr(feature = "deserialize", serde(default))]
313pub struct SamplerHeapBindTargets {
314 pub standard_samplers: BindTarget,
315 pub comparison_samplers: BindTarget,
316}
317
318impl Default for SamplerHeapBindTargets {
319 fn default() -> Self {
320 Self {
321 standard_samplers: BindTarget {
322 space: 0,
323 register: 0,
324 binding_array_size: None,
325 dynamic_storage_buffer_offsets_index: None,
326 restrict_indexing: false,
327 },
328 comparison_samplers: BindTarget {
329 space: 1,
330 register: 0,
331 binding_array_size: None,
332 dynamic_storage_buffer_offsets_index: None,
333 restrict_indexing: false,
334 },
335 }
336 }
337}
338
339#[cfg(feature = "deserialize")]
340#[derive(serde::Deserialize)]
341struct SamplerIndexBufferBindingSerialization {
342 group: u32,
343 bind_target: BindTarget,
344}
345
346#[cfg(feature = "deserialize")]
347fn deserialize_sampler_index_buffer_bindings<'de, D>(
348 deserializer: D,
349) -> Result<SamplerIndexBufferBindingMap, D::Error>
350where
351 D: serde::Deserializer<'de>,
352{
353 use serde::Deserialize;
354
355 let vec = Vec::<SamplerIndexBufferBindingSerialization>::deserialize(deserializer)?;
356 let mut map = SamplerIndexBufferBindingMap::default();
357 for item in vec {
358 map.insert(
359 SamplerIndexBufferKey { group: item.group },
360 item.bind_target,
361 );
362 }
363 Ok(map)
364}
365
366// We use a BTreeMap here so that we can hash it.
367pub type SamplerIndexBufferBindingMap =
368 alloc::collections::BTreeMap<SamplerIndexBufferKey, BindTarget>;
369
370#[cfg(feature = "deserialize")]
371#[derive(serde::Deserialize)]
372struct DynamicStorageBufferOffsetTargetSerialization {
373 index: u32,
374 bind_target: OffsetsBindTarget,
375}
376
377#[cfg(feature = "deserialize")]
378fn deserialize_storage_buffer_offsets<'de, D>(
379 deserializer: D,
380) -> Result<DynamicStorageBufferOffsetsTargets, D::Error>
381where
382 D: serde::Deserializer<'de>,
383{
384 use serde::Deserialize;
385
386 let vec = Vec::<DynamicStorageBufferOffsetTargetSerialization>::deserialize(deserializer)?;
387 let mut map = DynamicStorageBufferOffsetsTargets::default();
388 for item in vec {
389 map.insert(item.index, item.bind_target);
390 }
391 Ok(map)
392}
393
394pub type DynamicStorageBufferOffsetsTargets = alloc::collections::BTreeMap<u32, OffsetsBindTarget>;
395
396/// HLSL binding information for a Naga [`External`] image global variable.
397///
398/// See the module documentation's section on [External textures][mod] for details.
399///
400/// [`External`]: crate::ir::ImageClass::External
401/// [mod]: #external-textures
402#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
403#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
404#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
405pub struct ExternalTextureBindTarget {
406 /// HLSL binding information for the individual plane textures.
407 ///
408 /// Each of these should refer to an HLSL `Texture2D<float4>` holding one
409 /// plane of data for the external texture. The exact meaning of each plane
410 /// varies at runtime depending on where the external texture's data
411 /// originated.
412 pub planes: [BindTarget; 3],
413
414 /// HLSL binding information for a buffer holding the sampling parameters.
415 ///
416 /// This should refer to a cbuffer of type `NagaExternalTextureParams`, that
417 /// the code Naga generates for `textureSampleBaseClampToEdge` consults to
418 /// decide how to combine the data in [`planes`] to get the result required
419 /// by the spec.
420 ///
421 /// [`planes`]: Self::planes
422 pub params: BindTarget,
423}
424
425#[cfg(feature = "deserialize")]
426#[derive(serde::Deserialize)]
427struct ExternalTextureBindingMapSerialization {
428 resource_binding: crate::ResourceBinding,
429 bind_target: ExternalTextureBindTarget,
430}
431
432#[cfg(feature = "deserialize")]
433fn deserialize_external_texture_binding_map<'de, D>(
434 deserializer: D,
435) -> Result<ExternalTextureBindingMap, D::Error>
436where
437 D: serde::Deserializer<'de>,
438{
439 use serde::Deserialize;
440
441 let vec = Vec::<ExternalTextureBindingMapSerialization>::deserialize(deserializer)?;
442 let mut map = ExternalTextureBindingMap::default();
443 for item in vec {
444 map.insert(item.resource_binding, item.bind_target);
445 }
446 Ok(map)
447}
448pub type ExternalTextureBindingMap =
449 alloc::collections::BTreeMap<crate::ResourceBinding, ExternalTextureBindTarget>;
450
451/// Shorthand result used internally by the backend
452type BackendResult = Result<(), Error>;
453
454#[derive(Clone, Debug, PartialEq, thiserror::Error)]
455#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
456#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
457pub enum EntryPointError {
458 #[error("mapping of {0:?} is missing")]
459 MissingBinding(crate::ResourceBinding),
460}
461
462/// Configuration used in the [`Writer`].
463#[derive(Clone, Debug, Hash, PartialEq, Eq)]
464#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
465#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
466#[cfg_attr(feature = "deserialize", serde(default))]
467pub struct Options {
468 /// The hlsl shader model to be used
469 pub shader_model: ShaderModel,
470
471 /// HLSL binding information for each Naga global variable.
472 ///
473 /// This maps Naga [`GlobalVariable`]'s [`ResourceBinding`]s to a
474 /// [`BindTarget`] specifying its register number and space, along with
475 /// other details necessary to generate a full HLSL declaration for it,
476 /// or to access its value.
477 ///
478 /// This must provide a [`BindTarget`] for every [`GlobalVariable`] in the
479 /// [`Module`] that has a [`binding`].
480 ///
481 /// [`GlobalVariable`]: crate::ir::GlobalVariable
482 /// [`ResourceBinding`]: crate::ir::ResourceBinding
483 /// [`Module`]: crate::ir::Module
484 /// [`binding`]: crate::ir::GlobalVariable::binding
485 #[cfg_attr(
486 feature = "deserialize",
487 serde(deserialize_with = "deserialize_binding_map")
488 )]
489 pub binding_map: BindingMap,
490
491 /// Don't panic on missing bindings, instead generate any HLSL.
492 pub fake_missing_bindings: bool,
493 /// Add special constants to `SV_VertexIndex` and `SV_InstanceIndex`,
494 /// to make them work like in Vulkan/Metal, with help of the host.
495 pub special_constants_binding: Option<BindTarget>,
496
497 /// HLSL binding information for the [`Immediate`] global, if present.
498 ///
499 /// If a module contains a global in the [`Immediate`] address space, the
500 /// `dx12` backend stores its value directly in the root signature as a
501 /// series of [`D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS`], whose binding
502 /// information is given here.
503 ///
504 /// [`Immediate`]: crate::ir::AddressSpace::Immediate
505 /// [`D3D12_ROOT_PARAMETER_TYPE_32BIT_CONSTANTS`]: https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_root_parameter_type
506 pub immediates_target: Option<BindTarget>,
507
508 /// HLSL binding information for the sampler heap and comparison sampler heap.
509 pub sampler_heap_target: SamplerHeapBindTargets,
510
511 /// Mapping of each bind group's sampler index buffer to a bind target.
512 #[cfg_attr(
513 feature = "deserialize",
514 serde(deserialize_with = "deserialize_sampler_index_buffer_bindings")
515 )]
516 pub sampler_buffer_binding_map: SamplerIndexBufferBindingMap,
517 /// Bind target for dynamic storage buffer offsets
518 #[cfg_attr(
519 feature = "deserialize",
520 serde(deserialize_with = "deserialize_storage_buffer_offsets")
521 )]
522 pub dynamic_storage_buffer_offsets_targets: DynamicStorageBufferOffsetsTargets,
523 #[cfg_attr(
524 feature = "deserialize",
525 serde(deserialize_with = "deserialize_external_texture_binding_map")
526 )]
527
528 /// HLSL binding information for [`External`] image global variables.
529 ///
530 /// See [`ExternalTextureBindTarget`] for details.
531 ///
532 /// [`External`]: crate::ir::ImageClass::External
533 pub external_texture_binding_map: ExternalTextureBindingMap,
534
535 /// Should workgroup variables be zero initialized (by polyfilling)?
536 pub zero_initialize_workgroup_memory: bool,
537 /// Should we restrict indexing of vectors, matrices and arrays?
538 pub restrict_indexing: bool,
539 /// If set, loops will have code injected into them, forcing the compiler
540 /// to think the number of iterations is bounded.
541 pub force_loop_bounding: bool,
542 /// if set, ray queries will get a variable to track their state to prevent
543 /// misuse.
544 pub ray_query_initialization_tracking: bool,
545}
546
547impl Default for Options {
548 fn default() -> Self {
549 Options {
550 shader_model: ShaderModel::V5_1,
551 binding_map: BindingMap::default(),
552 fake_missing_bindings: true,
553 special_constants_binding: None,
554 sampler_heap_target: SamplerHeapBindTargets::default(),
555 sampler_buffer_binding_map: alloc::collections::BTreeMap::default(),
556 immediates_target: None,
557 dynamic_storage_buffer_offsets_targets: alloc::collections::BTreeMap::new(),
558 external_texture_binding_map: ExternalTextureBindingMap::default(),
559 zero_initialize_workgroup_memory: true,
560 restrict_indexing: true,
561 force_loop_bounding: true,
562 ray_query_initialization_tracking: true,
563 }
564 }
565}
566
567impl Options {
568 fn resolve_resource_binding(
569 &self,
570 res_binding: &crate::ResourceBinding,
571 ) -> Result<BindTarget, EntryPointError> {
572 match self.binding_map.get(res_binding) {
573 Some(target) => Ok(*target),
574 None if self.fake_missing_bindings => Ok(BindTarget {
575 space: res_binding.group as u8,
576 register: res_binding.binding,
577 binding_array_size: None,
578 dynamic_storage_buffer_offsets_index: None,
579 restrict_indexing: false,
580 }),
581 None => Err(EntryPointError::MissingBinding(*res_binding)),
582 }
583 }
584
585 fn resolve_external_texture_resource_binding(
586 &self,
587 res_binding: &crate::ResourceBinding,
588 ) -> Result<ExternalTextureBindTarget, EntryPointError> {
589 match self.external_texture_binding_map.get(res_binding) {
590 Some(target) => Ok(*target),
591 None if self.fake_missing_bindings => {
592 let fake = BindTarget {
593 space: res_binding.group as u8,
594 register: res_binding.binding,
595 binding_array_size: None,
596 dynamic_storage_buffer_offsets_index: None,
597 restrict_indexing: false,
598 };
599 Ok(ExternalTextureBindTarget {
600 planes: [fake, fake, fake],
601 params: fake,
602 })
603 }
604 None => Err(EntryPointError::MissingBinding(*res_binding)),
605 }
606 }
607}
608
609/// Reflection info for entry point names.
610#[derive(Default)]
611pub struct ReflectionInfo {
612 /// Mapping of the entry point names.
613 ///
614 /// Each item in the array corresponds to an entry point index. The real entry point name may be different if one of the
615 /// reserved words are used.
616 ///
617 /// Note: Some entry points may fail translation because of missing bindings.
618 pub entry_point_names: Vec<Result<String, EntryPointError>>,
619}
620
621/// A subset of options that are meant to be changed per pipeline.
622#[derive(Debug, Default, Clone)]
623#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
624#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
625#[cfg_attr(feature = "deserialize", serde(default))]
626pub struct PipelineOptions {
627 /// The entry point to write.
628 ///
629 /// Entry points are identified by a shader stage specification,
630 /// and a name.
631 ///
632 /// If `None`, all entry points will be written. If `Some` and the entry
633 /// point is not found, an error will be thrown while writing.
634 pub entry_point: Option<(ir::ShaderStage, String)>,
635}
636
637#[derive(Error, Debug)]
638pub enum Error {
639 #[error(transparent)]
640 IoError(#[from] FmtError),
641 #[error("A scalar with an unsupported width was requested: {0:?}")]
642 UnsupportedScalar(crate::Scalar),
643 #[error("{0}")]
644 Unimplemented(String), // TODO: Error used only during development
645 #[error("{0}")]
646 Custom(String),
647 #[error("overrides should not be present at this stage")]
648 Override,
649 #[error(transparent)]
650 ResolveArraySizeError(#[from] proc::ResolveArraySizeError),
651 #[error("entry point with stage {0:?} and name '{1}' not found")]
652 EntryPointNotFound(ir::ShaderStage, String),
653 #[error("requires shader model {1:?} for reason: {0}")]
654 ShaderModelTooLow(String, ShaderModel),
655}
656
657#[derive(PartialEq, Eq, Hash)]
658enum WrappedType {
659 ZeroValue(help::WrappedZeroValue),
660 ArrayLength(help::WrappedArrayLength),
661 ImageSample(help::WrappedImageSample),
662 ImageQuery(help::WrappedImageQuery),
663 ImageLoad(help::WrappedImageLoad),
664 ImageLoadScalar(crate::Scalar),
665 Constructor(help::WrappedConstructor),
666 StructMatrixAccess(help::WrappedStructMatrixAccess),
667 MatCx2(help::WrappedMatCx2),
668 Math(help::WrappedMath),
669 UnaryOp(help::WrappedUnaryOp),
670 BinaryOp(help::WrappedBinaryOp),
671 Cast(help::WrappedCast),
672}
673
674#[derive(Default)]
675struct Wrapped {
676 types: crate::FastHashSet<WrappedType>,
677 /// If true, the sampler heaps have been written out.
678 sampler_heaps: bool,
679 // Mapping from SamplerIndexBufferKey to the name the namer returned.
680 sampler_index_buffers: crate::FastHashMap<SamplerIndexBufferKey, String>,
681}
682
683impl Wrapped {
684 fn insert(&mut self, r#type: WrappedType) -> bool {
685 self.types.insert(r#type)
686 }
687
688 fn clear(&mut self) {
689 self.types.clear();
690 }
691}
692
693/// A fragment entry point to be considered when generating HLSL for the output interface of vertex
694/// entry points.
695///
696/// This is provided as an optional parameter to [`Writer::write`].
697///
698/// If this is provided, vertex outputs will be removed if they are not inputs of this fragment
699/// entry point. This is necessary for generating correct HLSL when some of the vertex shader
700/// outputs are not consumed by the fragment shader.
701pub struct FragmentEntryPoint<'a> {
702 module: &'a crate::Module,
703 func: &'a crate::Function,
704}
705
706impl<'a> FragmentEntryPoint<'a> {
707 /// Returns `None` if the entry point with the provided name can't be found or isn't a fragment
708 /// entry point.
709 pub fn new(module: &'a crate::Module, ep_name: &'a str) -> Option<Self> {
710 module
711 .entry_points
712 .iter()
713 .find(|ep| ep.name == ep_name)
714 .filter(|ep| ep.stage == crate::ShaderStage::Fragment)
715 .map(|ep| Self {
716 module,
717 func: &ep.function,
718 })
719 }
720}
721
722pub struct Writer<'a, W> {
723 out: W,
724 names: crate::FastHashMap<proc::NameKey, String>,
725 namer: proc::Namer,
726 /// HLSL backend options
727 options: &'a Options,
728 /// Per-stage backend options
729 pipeline_options: &'a PipelineOptions,
730 /// Information about entry point arguments and result types.
731 entry_point_io: crate::FastHashMap<usize, writer::EntryPointInterface>,
732 /// Set of expressions that have associated temporary variables
733 named_expressions: crate::NamedExpressions,
734 wrapped: Wrapped,
735 written_committed_intersection: bool,
736 written_candidate_intersection: bool,
737 continue_ctx: back::continue_forward::ContinueCtx,
738
739 /// A reference to some part of a global variable, lowered to a series of
740 /// byte offset calculations.
741 ///
742 /// See the [`storage`] module for background on why we need this.
743 ///
744 /// Each [`SubAccess`] in the vector is a lowering of some [`Access`] or
745 /// [`AccessIndex`] expression to the level of byte strides and offsets. See
746 /// [`SubAccess`] for details.
747 ///
748 /// This field is a member of [`Writer`] solely to allow re-use of
749 /// the `Vec`'s dynamic allocation. The value is no longer needed
750 /// once HLSL for the access has been generated.
751 ///
752 /// [`Storage`]: crate::AddressSpace::Storage
753 /// [`SubAccess`]: storage::SubAccess
754 /// [`Access`]: crate::Expression::Access
755 /// [`AccessIndex`]: crate::Expression::AccessIndex
756 temp_access_chain: Vec<storage::SubAccess>,
757 need_bake_expressions: back::NeedBakeExpressions,
758}