1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
use super::{
ast::*,
builtins::{inject_builtin, sampled_to_depth},
context::{Context, ExprPos, StmtContext},
error::{Error, ErrorKind},
types::scalar_components,
Frontend, Result,
};
use crate::{
front::glsl::types::type_power, proc::ensure_block_returns, AddressSpace, Block, EntryPoint,
Expression, Function, FunctionArgument, FunctionResult, Handle, Literal, LocalVariable, Scalar,
ScalarKind, Span, Statement, StructMember, Type, TypeInner,
};
use std::iter;
/// Struct detailing a store operation that must happen after a function call
struct ProxyWrite {
/// The store target
target: Handle<Expression>,
/// A pointer to read the value of the store
value: Handle<Expression>,
/// An optional conversion to be applied
convert: Option<Scalar>,
}
impl Frontend {
pub(crate) fn function_or_constructor_call(
&mut self,
ctx: &mut Context,
stmt: &StmtContext,
fc: FunctionCallKind,
raw_args: &[Handle<HirExpr>],
meta: Span,
) -> Result<Option<Handle<Expression>>> {
let args: Vec<_> = raw_args
.iter()
.map(|e| ctx.lower_expect_inner(stmt, self, *e, ExprPos::Rhs))
.collect::<Result<_>>()?;
match fc {
FunctionCallKind::TypeConstructor(ty) => {
if args.len() == 1 {
self.constructor_single(ctx, ty, args[0], meta).map(Some)
} else {
self.constructor_many(ctx, ty, args, meta).map(Some)
}
}
FunctionCallKind::Function(name) => {
self.function_call(ctx, stmt, name, args, raw_args, meta)
}
}
}
fn constructor_single(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
(mut value, expr_meta): (Handle<Expression>, Span),
meta: Span,
) -> Result<Handle<Expression>> {
let expr_type = ctx.resolve_type(value, expr_meta)?;
let vector_size = match *expr_type {
TypeInner::Vector { size, .. } => Some(size),
_ => None,
};
let expr_is_bool = expr_type.scalar_kind() == Some(ScalarKind::Bool);
// Special case: if casting from a bool, we need to use Select and not As.
match ctx.module.types[ty].inner.scalar() {
Some(result_scalar) if expr_is_bool && result_scalar.kind != ScalarKind::Bool => {
let result_scalar = Scalar {
width: 4,
..result_scalar
};
let l0 = Literal::zero(result_scalar).unwrap();
let l1 = Literal::one(result_scalar).unwrap();
let mut reject = ctx.add_expression(Expression::Literal(l0), expr_meta)?;
let mut accept = ctx.add_expression(Expression::Literal(l1), expr_meta)?;
ctx.implicit_splat(&mut reject, meta, vector_size)?;
ctx.implicit_splat(&mut accept, meta, vector_size)?;
let h = ctx.add_expression(
Expression::Select {
accept,
reject,
condition: value,
},
expr_meta,
)?;
return Ok(h);
}
_ => {}
}
Ok(match ctx.module.types[ty].inner {
TypeInner::Vector { size, scalar } if vector_size.is_none() => {
ctx.forced_conversion(&mut value, expr_meta, scalar)?;
if let TypeInner::Scalar { .. } = *ctx.resolve_type(value, expr_meta)? {
ctx.add_expression(Expression::Splat { size, value }, meta)?
} else {
self.vector_constructor(ctx, ty, size, scalar, &[(value, expr_meta)], meta)?
}
}
TypeInner::Scalar(scalar) => {
let mut expr = value;
if let TypeInner::Vector { .. } | TypeInner::Matrix { .. } =
*ctx.resolve_type(value, expr_meta)?
{
expr = ctx.add_expression(
Expression::AccessIndex {
base: expr,
index: 0,
},
meta,
)?;
}
if let TypeInner::Matrix { .. } = *ctx.resolve_type(value, expr_meta)? {
expr = ctx.add_expression(
Expression::AccessIndex {
base: expr,
index: 0,
},
meta,
)?;
}
ctx.add_expression(
Expression::As {
kind: scalar.kind,
expr,
convert: Some(scalar.width),
},
meta,
)?
}
TypeInner::Vector { size, scalar } => {
if vector_size != Some(size) {
value = ctx.vector_resize(size, value, expr_meta)?;
}
ctx.add_expression(
Expression::As {
kind: scalar.kind,
expr: value,
convert: Some(scalar.width),
},
meta,
)?
}
TypeInner::Matrix {
columns,
rows,
scalar,
} => self.matrix_one_arg(ctx, ty, columns, rows, scalar, (value, expr_meta), meta)?,
TypeInner::Struct { ref members, .. } => {
let scalar_components = members
.first()
.and_then(|member| scalar_components(&ctx.module.types[member.ty].inner));
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut value, expr_meta, scalar)?;
}
ctx.add_expression(
Expression::Compose {
ty,
components: vec![value],
},
meta,
)?
}
TypeInner::Array { base, .. } => {
let scalar_components = scalar_components(&ctx.module.types[base].inner);
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut value, expr_meta, scalar)?;
}
ctx.add_expression(
Expression::Compose {
ty,
components: vec![value],
},
meta,
)?
}
_ => {
self.errors.push(Error {
kind: ErrorKind::SemanticError("Bad type constructor".into()),
meta,
});
value
}
})
}
#[allow(clippy::too_many_arguments)]
fn matrix_one_arg(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
columns: crate::VectorSize,
rows: crate::VectorSize,
element_scalar: Scalar,
(mut value, expr_meta): (Handle<Expression>, Span),
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(columns as usize);
// TODO: casts
// `Expression::As` doesn't support matrix width
// casts so we need to do some extra work for casts
ctx.forced_conversion(&mut value, expr_meta, element_scalar)?;
match *ctx.resolve_type(value, expr_meta)? {
TypeInner::Scalar(_) => {
// If a matrix is constructed with a single scalar value, then that
// value is used to initialize all the values along the diagonal of
// the matrix; the rest are given zeros.
let vector_ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
let zero_literal = Literal::zero(element_scalar).unwrap();
let zero = ctx.add_expression(Expression::Literal(zero_literal), meta)?;
for i in 0..columns as u32 {
components.push(
ctx.add_expression(
Expression::Compose {
ty: vector_ty,
components: (0..rows as u32)
.map(|r| match r == i {
true => value,
false => zero,
})
.collect(),
},
meta,
)?,
)
}
}
TypeInner::Matrix {
rows: ori_rows,
columns: ori_cols,
..
} => {
// If a matrix is constructed from a matrix, then each component
// (column i, row j) in the result that has a corresponding component
// (column i, row j) in the argument will be initialized from there. All
// other components will be initialized to the identity matrix.
let zero_literal = Literal::zero(element_scalar).unwrap();
let one_literal = Literal::one(element_scalar).unwrap();
let zero = ctx.add_expression(Expression::Literal(zero_literal), meta)?;
let one = ctx.add_expression(Expression::Literal(one_literal), meta)?;
let vector_ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
for i in 0..columns as u32 {
if i < ori_cols as u32 {
use std::cmp::Ordering;
let vector = ctx.add_expression(
Expression::AccessIndex {
base: value,
index: i,
},
meta,
)?;
components.push(match ori_rows.cmp(&rows) {
Ordering::Less => {
let components = (0..rows as u32)
.map(|r| {
if r < ori_rows as u32 {
ctx.add_expression(
Expression::AccessIndex {
base: vector,
index: r,
},
meta,
)
} else if r == i {
Ok(one)
} else {
Ok(zero)
}
})
.collect::<Result<_>>()?;
ctx.add_expression(
Expression::Compose {
ty: vector_ty,
components,
},
meta,
)?
}
Ordering::Equal => vector,
Ordering::Greater => ctx.vector_resize(rows, vector, meta)?,
})
} else {
let compose_expr = Expression::Compose {
ty: vector_ty,
components: (0..rows as u32)
.map(|r| match r == i {
true => one,
false => zero,
})
.collect(),
};
let vec = ctx.add_expression(compose_expr, meta)?;
components.push(vec)
}
}
}
_ => {
components = iter::repeat(value).take(columns as usize).collect();
}
}
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
#[allow(clippy::too_many_arguments)]
fn vector_constructor(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
size: crate::VectorSize,
scalar: Scalar,
args: &[(Handle<Expression>, Span)],
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(size as usize);
for (mut arg, expr_meta) in args.iter().copied() {
ctx.forced_conversion(&mut arg, expr_meta, scalar)?;
if components.len() >= size as usize {
break;
}
match *ctx.resolve_type(arg, expr_meta)? {
TypeInner::Scalar { .. } => components.push(arg),
TypeInner::Matrix { rows, columns, .. } => {
components.reserve(rows as usize * columns as usize);
for c in 0..(columns as u32) {
let base = ctx.add_expression(
Expression::AccessIndex {
base: arg,
index: c,
},
expr_meta,
)?;
for r in 0..(rows as u32) {
components.push(ctx.add_expression(
Expression::AccessIndex { base, index: r },
expr_meta,
)?)
}
}
}
TypeInner::Vector { size: ori_size, .. } => {
components.reserve(ori_size as usize);
for index in 0..(ori_size as u32) {
components.push(ctx.add_expression(
Expression::AccessIndex { base: arg, index },
expr_meta,
)?)
}
}
_ => components.push(arg),
}
}
components.truncate(size as usize);
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
fn constructor_many(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
args: Vec<(Handle<Expression>, Span)>,
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(args.len());
let struct_member_data = match ctx.module.types[ty].inner {
TypeInner::Matrix {
columns,
rows,
scalar: element_scalar,
} => {
let mut flattened = Vec::with_capacity(columns as usize * rows as usize);
for (mut arg, meta) in args.iter().copied() {
ctx.forced_conversion(&mut arg, meta, element_scalar)?;
match *ctx.resolve_type(arg, meta)? {
TypeInner::Vector { size, .. } => {
for i in 0..(size as u32) {
flattened.push(ctx.add_expression(
Expression::AccessIndex {
base: arg,
index: i,
},
meta,
)?)
}
}
_ => flattened.push(arg),
}
}
let ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
for chunk in flattened.chunks(rows as usize) {
components.push(ctx.add_expression(
Expression::Compose {
ty,
components: Vec::from(chunk),
},
meta,
)?)
}
None
}
TypeInner::Vector { size, scalar } => {
return self.vector_constructor(ctx, ty, size, scalar, &args, meta)
}
TypeInner::Array { base, .. } => {
for (mut arg, meta) in args.iter().copied() {
let scalar_components = scalar_components(&ctx.module.types[base].inner);
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut arg, meta, scalar)?;
}
components.push(arg)
}
None
}
TypeInner::Struct { ref members, .. } => Some(
members
.iter()
.map(|member| scalar_components(&ctx.module.types[member.ty].inner))
.collect::<Vec<_>>(),
),
_ => {
return Err(Error {
kind: ErrorKind::SemanticError("Constructor: Too many arguments".into()),
meta,
})
}
};
if let Some(struct_member_data) = struct_member_data {
for ((mut arg, meta), scalar_components) in
args.iter().copied().zip(struct_member_data.iter().copied())
{
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut arg, meta, scalar)?;
}
components.push(arg)
}
}
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
#[allow(clippy::too_many_arguments)]
fn function_call(
&mut self,
ctx: &mut Context,
stmt: &StmtContext,
name: String,
args: Vec<(Handle<Expression>, Span)>,
raw_args: &[Handle<HirExpr>],
meta: Span,
) -> Result<Option<Handle<Expression>>> {
// Grow the typifier to be able to index it later without needing
// to hold the context mutably
for &(expr, span) in args.iter() {
ctx.typifier_grow(expr, span)?;
}
// Check if the passed arguments require any special variations
let mut variations =
builtin_required_variations(args.iter().map(|&(expr, _)| ctx.get_type(expr)));
// Initiate the declaration if it wasn't previously initialized and inject builtins
let declaration = self.lookup_function.entry(name.clone()).or_insert_with(|| {
variations |= BuiltinVariations::STANDARD;
Default::default()
});
inject_builtin(declaration, ctx.module, &name, variations);
// Borrow again but without mutability, at this point a declaration is guaranteed
let declaration = self.lookup_function.get(&name).unwrap();
// Possibly contains the overload to be used in the call
let mut maybe_overload = None;
// The conversions needed for the best analyzed overload, this is initialized all to
// `NONE` to make sure that conversions always pass the first time without ambiguity
let mut old_conversions = vec![Conversion::None; args.len()];
// Tracks whether the comparison between overloads lead to an ambiguity
let mut ambiguous = false;
// Iterate over all the available overloads to select either an exact match or a
// overload which has suitable implicit conversions
'outer: for (overload_idx, overload) in declaration.overloads.iter().enumerate() {
// If the overload and the function call don't have the same number of arguments
// continue to the next overload
if args.len() != overload.parameters.len() {
continue;
}
log::trace!("Testing overload {}", overload_idx);
// Stores whether the current overload matches exactly the function call
let mut exact = true;
// State of the selection
// If None we still don't know what is the best overload
// If Some(true) the new overload is better
// If Some(false) the old overload is better
let mut superior = None;
// Store the conversions for the current overload so that later they can replace the
// conversions used for querying the best overload
let mut new_conversions = vec![Conversion::None; args.len()];
// Loop through the overload parameters and check if the current overload is better
// compared to the previous best overload.
for (i, overload_parameter) in overload.parameters.iter().enumerate() {
let call_argument = &args[i];
let parameter_info = &overload.parameters_info[i];
// If the image is used in the overload as a depth texture convert it
// before comparing, otherwise exact matches wouldn't be reported
if parameter_info.depth {
sampled_to_depth(ctx, call_argument.0, call_argument.1, &mut self.errors);
ctx.invalidate_expression(call_argument.0, call_argument.1)?
}
ctx.typifier_grow(call_argument.0, call_argument.1)?;
let overload_param_ty = &ctx.module.types[*overload_parameter].inner;
let call_arg_ty = ctx.get_type(call_argument.0);
log::trace!(
"Testing parameter {}\n\tOverload = {:?}\n\tCall = {:?}",
i,
overload_param_ty,
call_arg_ty
);
// Storage images cannot be directly compared since while the access is part of the
// type in naga's IR, in glsl they are a qualifier and don't enter in the match as
// long as the access needed is satisfied.
if let (
&TypeInner::Image {
class:
crate::ImageClass::Storage {
format: overload_format,
access: overload_access,
},
dim: overload_dim,
arrayed: overload_arrayed,
},
&TypeInner::Image {
class:
crate::ImageClass::Storage {
format: call_format,
access: call_access,
},
dim: call_dim,
arrayed: call_arrayed,
},
) = (overload_param_ty, call_arg_ty)
{
// Images size must match otherwise the overload isn't what we want
let good_size = call_dim == overload_dim && call_arrayed == overload_arrayed;
// Glsl requires the formats to strictly match unless you are builtin
// function overload and have not been replaced, in which case we only
// check that the format scalar kind matches
let good_format = overload_format == call_format
|| (overload.internal
&& Scalar::from(overload_format) == Scalar::from(call_format));
if !(good_size && good_format) {
continue 'outer;
}
// While storage access mismatch is an error it isn't one that causes
// the overload matching to fail so we defer the error and consider
// that the images match exactly
if !call_access.contains(overload_access) {
self.errors.push(Error {
kind: ErrorKind::SemanticError(
format!(
"'{}': image needs {:?} access but only {:?} was provided",
name, overload_access, call_access
)
.into(),
),
meta,
});
}
// The images satisfy the conditions to be considered as an exact match
new_conversions[i] = Conversion::Exact;
continue;
} else if overload_param_ty == call_arg_ty {
// If the types match there's no need to check for conversions so continue
new_conversions[i] = Conversion::Exact;
continue;
}
// Glsl defines that inout follows both the conversions for input parameters and
// output parameters, this means that the type must have a conversion from both the
// call argument to the function parameter and the function parameter to the call
// argument, the only way this is possible is for the conversion to be an identity
// (i.e. call argument = function parameter)
if let ParameterQualifier::InOut = parameter_info.qualifier {
continue 'outer;
}
// The function call argument and the function definition
// parameter are not equal at this point, so we need to try
// implicit conversions.
//
// Now there are two cases, the argument is defined as a normal
// parameter (`in` or `const`), in this case an implicit
// conversion is made from the calling argument to the
// definition argument. If the parameter is `out` the
// opposite needs to be done, so the implicit conversion is made
// from the definition argument to the calling argument.
let maybe_conversion = if parameter_info.qualifier.is_lhs() {
conversion(call_arg_ty, overload_param_ty)
} else {
conversion(overload_param_ty, call_arg_ty)
};
let conversion = match maybe_conversion {
Some(info) => info,
None => continue 'outer,
};
// At this point a conversion will be needed so the overload no longer
// exactly matches the call arguments
exact = false;
// Compare the conversions needed for this overload parameter to that of the
// last overload analyzed respective parameter, the value is:
// - `true` when the new overload argument has a better conversion
// - `false` when the old overload argument has a better conversion
let best_arg = match (conversion, old_conversions[i]) {
// An exact match is always better, we don't need to check this for the
// current overload since it was checked earlier
(_, Conversion::Exact) => false,
// No overload was yet analyzed so this one is the best yet
(_, Conversion::None) => true,
// A conversion from a float to a double is the best possible conversion
(Conversion::FloatToDouble, _) => true,
(_, Conversion::FloatToDouble) => false,
// A conversion from a float to an integer is preferred than one
// from double to an integer
(Conversion::IntToFloat, Conversion::IntToDouble) => true,
(Conversion::IntToDouble, Conversion::IntToFloat) => false,
// This case handles things like no conversion and exact which were already
// treated and other cases which no conversion is better than the other
_ => continue,
};
// Check if the best parameter corresponds to the current selected overload
// to pass to the next comparison, if this isn't true mark it as ambiguous
match best_arg {
true => match superior {
Some(false) => ambiguous = true,
_ => {
superior = Some(true);
new_conversions[i] = conversion
}
},
false => match superior {
Some(true) => ambiguous = true,
_ => superior = Some(false),
},
}
}
// The overload matches exactly the function call so there's no ambiguity (since
// repeated overload aren't allowed) and the current overload is selected, no
// further querying is needed.
if exact {
maybe_overload = Some(overload);
ambiguous = false;
break;
}
match superior {
// New overload is better keep it
Some(true) => {
maybe_overload = Some(overload);
// Replace the conversions
old_conversions = new_conversions;
}
// Old overload is better do nothing
Some(false) => {}
// No overload was better than the other this can be caused
// when all conversions are ambiguous in which the overloads themselves are
// ambiguous.
None => {
ambiguous = true;
// Assign the new overload, this helps ensures that in this case of
// ambiguity the parsing won't end immediately and allow for further
// collection of errors.
maybe_overload = Some(overload);
}
}
}
if ambiguous {
self.errors.push(Error {
kind: ErrorKind::SemanticError(
format!("Ambiguous best function for '{name}'").into(),
),
meta,
})
}
let overload = maybe_overload.ok_or_else(|| Error {
kind: ErrorKind::SemanticError(format!("Unknown function '{name}'").into()),
meta,
})?;
let parameters_info = overload.parameters_info.clone();
let parameters = overload.parameters.clone();
let is_void = overload.void;
let kind = overload.kind;
let mut arguments = Vec::with_capacity(args.len());
let mut proxy_writes = Vec::new();
// Iterate through the function call arguments applying transformations as needed
for (((parameter_info, call_argument), expr), parameter) in parameters_info
.iter()
.zip(&args)
.zip(raw_args)
.zip(¶meters)
{
if parameter_info.qualifier.is_lhs() {
// Reprocess argument in LHS position
let (handle, meta) = ctx.lower_expect_inner(stmt, self, *expr, ExprPos::Lhs)?;
self.process_lhs_argument(
ctx,
meta,
*parameter,
parameter_info,
handle,
call_argument,
&mut proxy_writes,
&mut arguments,
)?;
continue;
}
let (mut handle, meta) = *call_argument;
let scalar_comps = scalar_components(&ctx.module.types[*parameter].inner);
// Apply implicit conversions as needed
if let Some(scalar) = scalar_comps {
ctx.implicit_conversion(&mut handle, meta, scalar)?;
}
arguments.push(handle)
}
match kind {
FunctionKind::Call(function) => {
ctx.emit_end();
let result = if !is_void {
Some(ctx.add_expression(Expression::CallResult(function), meta)?)
} else {
None
};
ctx.body.push(
Statement::Call {
function,
arguments,
result,
},
meta,
);
ctx.emit_start();
// Write back all the variables that were scheduled to their original place
for proxy_write in proxy_writes {
let mut value = ctx.add_expression(
Expression::Load {
pointer: proxy_write.value,
},
meta,
)?;
if let Some(scalar) = proxy_write.convert {
ctx.conversion(&mut value, meta, scalar)?;
}
ctx.emit_restart();
ctx.body.push(
Statement::Store {
pointer: proxy_write.target,
value,
},
meta,
);
}
Ok(result)
}
FunctionKind::Macro(builtin) => builtin.call(self, ctx, arguments.as_mut_slice(), meta),
}
}
/// Processes a function call argument that appears in place of an output
/// parameter.
#[allow(clippy::too_many_arguments)]
fn process_lhs_argument(
&mut self,
ctx: &mut Context,
meta: Span,
parameter_ty: Handle<Type>,
parameter_info: &ParameterInfo,
original: Handle<Expression>,
call_argument: &(Handle<Expression>, Span),
proxy_writes: &mut Vec<ProxyWrite>,
arguments: &mut Vec<Handle<Expression>>,
) -> Result<()> {
let original_ty = ctx.resolve_type(original, meta)?;
let original_pointer_space = original_ty.pointer_space();
// The type of a possible spill variable needed for a proxy write
let mut maybe_ty = match *original_ty {
// If the argument is to be passed as a pointer but the type of the
// expression returns a vector it must mean that it was for example
// swizzled and it must be spilled into a local before calling
TypeInner::Vector { size, scalar } => Some(ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector { size, scalar },
},
Span::default(),
)),
// If the argument is a pointer whose address space isn't `Function`, an
// indirection through a local variable is needed to align the address
// spaces of the call argument and the overload parameter.
TypeInner::Pointer { base, space } if space != AddressSpace::Function => Some(base),
TypeInner::ValuePointer {
size,
scalar,
space,
} if space != AddressSpace::Function => {
let inner = match size {
Some(size) => TypeInner::Vector { size, scalar },
None => TypeInner::Scalar(scalar),
};
Some(
ctx.module
.types
.insert(Type { name: None, inner }, Span::default()),
)
}
_ => None,
};
// Since the original expression might be a pointer and we want a value
// for the proxy writes, we might need to load the pointer.
let value = if original_pointer_space.is_some() {
ctx.add_expression(Expression::Load { pointer: original }, Span::default())?
} else {
original
};
ctx.typifier_grow(call_argument.0, call_argument.1)?;
let overload_param_ty = &ctx.module.types[parameter_ty].inner;
let call_arg_ty = ctx.get_type(call_argument.0);
let needs_conversion = call_arg_ty != overload_param_ty;
let arg_scalar_comps = scalar_components(call_arg_ty);
// Since output parameters also allow implicit conversions from the
// parameter to the argument, we need to spill the conversion to a
// variable and create a proxy write for the original variable.
if needs_conversion {
maybe_ty = Some(parameter_ty);
}
if let Some(ty) = maybe_ty {
// Create the spill variable
let spill_var = ctx.locals.append(
LocalVariable {
name: None,
ty,
init: None,
},
Span::default(),
);
let spill_expr =
ctx.add_expression(Expression::LocalVariable(spill_var), Span::default())?;
// If the argument is also copied in we must store the value of the
// original variable to the spill variable.
if let ParameterQualifier::InOut = parameter_info.qualifier {
ctx.body.push(
Statement::Store {
pointer: spill_expr,
value,
},
Span::default(),
);
}
// Add the spill variable as an argument to the function call
arguments.push(spill_expr);
let convert = if needs_conversion {
arg_scalar_comps
} else {
None
};
// Register the temporary local to be written back to it's original
// place after the function call
if let Expression::Swizzle {
size,
mut vector,
pattern,
} = ctx.expressions[original]
{
if let Expression::Load { pointer } = ctx.expressions[vector] {
vector = pointer;
}
for (i, component) in pattern.iter().take(size as usize).enumerate() {
let original = ctx.add_expression(
Expression::AccessIndex {
base: vector,
index: *component as u32,
},
Span::default(),
)?;
let spill_component = ctx.add_expression(
Expression::AccessIndex {
base: spill_expr,
index: i as u32,
},
Span::default(),
)?;
proxy_writes.push(ProxyWrite {
target: original,
value: spill_component,
convert,
});
}
} else {
proxy_writes.push(ProxyWrite {
target: original,
value: spill_expr,
convert,
});
}
} else {
arguments.push(original);
}
Ok(())
}
pub(crate) fn add_function(
&mut self,
mut ctx: Context,
name: String,
result: Option<FunctionResult>,
meta: Span,
) {
ensure_block_returns(&mut ctx.body);
let void = result.is_none();
// Check if the passed arguments require any special variations
let mut variations = builtin_required_variations(
ctx.parameters
.iter()
.map(|&arg| &ctx.module.types[arg].inner),
);
// Initiate the declaration if it wasn't previously initialized and inject builtins
let declaration = self.lookup_function.entry(name.clone()).or_insert_with(|| {
variations |= BuiltinVariations::STANDARD;
Default::default()
});
inject_builtin(declaration, ctx.module, &name, variations);
let Context {
expressions,
locals,
arguments,
parameters,
parameters_info,
body,
module,
..
} = ctx;
let function = Function {
name: Some(name),
arguments,
result,
local_variables: locals,
expressions,
named_expressions: crate::NamedExpressions::default(),
body,
diagnostic_filter_leaf: None,
};
'outer: for decl in declaration.overloads.iter_mut() {
if parameters.len() != decl.parameters.len() {
continue;
}
for (new_parameter, old_parameter) in parameters.iter().zip(decl.parameters.iter()) {
let new_inner = &module.types[*new_parameter].inner;
let old_inner = &module.types[*old_parameter].inner;
if new_inner != old_inner {
continue 'outer;
}
}
if decl.defined {
return self.errors.push(Error {
kind: ErrorKind::SemanticError("Function already defined".into()),
meta,
});
}
decl.defined = true;
decl.parameters_info = parameters_info;
match decl.kind {
FunctionKind::Call(handle) => *module.functions.get_mut(handle) = function,
FunctionKind::Macro(_) => {
let handle = module.functions.append(function, meta);
decl.kind = FunctionKind::Call(handle)
}
}
return;
}
let handle = module.functions.append(function, meta);
declaration.overloads.push(Overload {
parameters,
parameters_info,
kind: FunctionKind::Call(handle),
defined: true,
internal: false,
void,
});
}
pub(crate) fn add_prototype(
&mut self,
ctx: Context,
name: String,
result: Option<FunctionResult>,
meta: Span,
) {
let void = result.is_none();
// Check if the passed arguments require any special variations
let mut variations = builtin_required_variations(
ctx.parameters
.iter()
.map(|&arg| &ctx.module.types[arg].inner),
);
// Initiate the declaration if it wasn't previously initialized and inject builtins
let declaration = self.lookup_function.entry(name.clone()).or_insert_with(|| {
variations |= BuiltinVariations::STANDARD;
Default::default()
});
inject_builtin(declaration, ctx.module, &name, variations);
let Context {
arguments,
parameters,
parameters_info,
module,
..
} = ctx;
let function = Function {
name: Some(name),
arguments,
result,
..Default::default()
};
'outer: for decl in declaration.overloads.iter() {
if parameters.len() != decl.parameters.len() {
continue;
}
for (new_parameter, old_parameter) in parameters.iter().zip(decl.parameters.iter()) {
let new_inner = &module.types[*new_parameter].inner;
let old_inner = &module.types[*old_parameter].inner;
if new_inner != old_inner {
continue 'outer;
}
}
return self.errors.push(Error {
kind: ErrorKind::SemanticError("Prototype already defined".into()),
meta,
});
}
let handle = module.functions.append(function, meta);
declaration.overloads.push(Overload {
parameters,
parameters_info,
kind: FunctionKind::Call(handle),
defined: false,
internal: false,
void,
});
}
/// Create a Naga [`EntryPoint`] that calls the GLSL `main` function.
///
/// We compile the GLSL `main` function as an ordinary Naga [`Function`].
/// This function synthesizes a Naga [`EntryPoint`] to call that.
///
/// Each GLSL input and output variable (including builtins) becomes a Naga
/// [`GlobalVariable`]s in the [`Private`] address space, which `main` can
/// access in the usual way.
///
/// The `EntryPoint` we synthesize here has an argument for each GLSL input
/// variable, and returns a struct with a member for each GLSL output
/// variable. The entry point contains code to:
///
/// - copy its arguments into the Naga globals representing the GLSL input
/// variables,
///
/// - call the Naga `Function` representing the GLSL `main` function, and then
///
/// - build its return value from whatever values the GLSL `main` left in
/// the Naga globals representing GLSL `output` variables.
///
/// Upon entry, [`ctx.body`] should contain code, accumulated by prior calls
/// to [`ParsingContext::parse_external_declaration`][pxd], to initialize
/// private global variables as needed. This code gets spliced into the
/// entry point before the call to `main`.
///
/// [`GlobalVariable`]: crate::GlobalVariable
/// [`Private`]: crate::AddressSpace::Private
/// [`ctx.body`]: Context::body
/// [pxd]: super::ParsingContext::parse_external_declaration
pub(crate) fn add_entry_point(
&mut self,
function: Handle<Function>,
mut ctx: Context,
) -> Result<()> {
let mut arguments = Vec::new();
let body = Block::with_capacity(
// global init body
ctx.body.len() +
// prologue and epilogue
self.entry_args.len() * 2
// Call, Emit for composing struct and return
+ 3,
);
let global_init_body = std::mem::replace(&mut ctx.body, body);
for arg in self.entry_args.iter() {
if arg.storage != StorageQualifier::Input {
continue;
}
let pointer = ctx
.expressions
.append(Expression::GlobalVariable(arg.handle), Default::default());
ctx.local_expression_kind_tracker
.insert(pointer, crate::proc::ExpressionKind::Runtime);
let ty = ctx.module.global_variables[arg.handle].ty;
ctx.arg_type_walker(
arg.name.clone(),
arg.binding.clone(),
pointer,
ty,
&mut |ctx, name, pointer, ty, binding| {
let idx = arguments.len() as u32;
arguments.push(FunctionArgument {
name,
ty,
binding: Some(binding),
});
let value = ctx
.expressions
.append(Expression::FunctionArgument(idx), Default::default());
ctx.local_expression_kind_tracker
.insert(value, crate::proc::ExpressionKind::Runtime);
ctx.body
.push(Statement::Store { pointer, value }, Default::default());
},
)?
}
ctx.body.extend_block(global_init_body);
ctx.body.push(
Statement::Call {
function,
arguments: Vec::new(),
result: None,
},
Default::default(),
);
let mut span = 0;
let mut members = Vec::new();
let mut components = Vec::new();
for arg in self.entry_args.iter() {
if arg.storage != StorageQualifier::Output {
continue;
}
let pointer = ctx
.expressions
.append(Expression::GlobalVariable(arg.handle), Default::default());
ctx.local_expression_kind_tracker
.insert(pointer, crate::proc::ExpressionKind::Runtime);
let ty = ctx.module.global_variables[arg.handle].ty;
ctx.arg_type_walker(
arg.name.clone(),
arg.binding.clone(),
pointer,
ty,
&mut |ctx, name, pointer, ty, binding| {
members.push(StructMember {
name,
ty,
binding: Some(binding),
offset: span,
});
span += ctx.module.types[ty].inner.size(ctx.module.to_ctx());
let len = ctx.expressions.len();
let load = ctx
.expressions
.append(Expression::Load { pointer }, Default::default());
ctx.local_expression_kind_tracker
.insert(load, crate::proc::ExpressionKind::Runtime);
ctx.body.push(
Statement::Emit(ctx.expressions.range_from(len)),
Default::default(),
);
components.push(load)
},
)?
}
let (ty, value) = if !components.is_empty() {
let ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Struct { members, span },
},
Default::default(),
);
let len = ctx.expressions.len();
let res = ctx
.expressions
.append(Expression::Compose { ty, components }, Default::default());
ctx.local_expression_kind_tracker
.insert(res, crate::proc::ExpressionKind::Runtime);
ctx.body.push(
Statement::Emit(ctx.expressions.range_from(len)),
Default::default(),
);
(Some(ty), Some(res))
} else {
(None, None)
};
ctx.body
.push(Statement::Return { value }, Default::default());
let Context {
body, expressions, ..
} = ctx;
ctx.module.entry_points.push(EntryPoint {
name: "main".to_string(),
stage: self.meta.stage,
early_depth_test: Some(crate::EarlyDepthTest { conservative: None })
.filter(|_| self.meta.early_fragment_tests),
workgroup_size: self.meta.workgroup_size,
workgroup_size_overrides: None,
function: Function {
arguments,
expressions,
body,
result: ty.map(|ty| FunctionResult { ty, binding: None }),
..Default::default()
},
});
Ok(())
}
}
impl Context<'_> {
/// Helper function for building the input/output interface of the entry point
///
/// Calls `f` with the data of the entry point argument, flattening composite types
/// recursively
///
/// The passed arguments to the callback are:
/// - The ctx
/// - The name
/// - The pointer expression to the global storage
/// - The handle to the type of the entry point argument
/// - The binding of the entry point argument
fn arg_type_walker(
&mut self,
name: Option<String>,
binding: crate::Binding,
pointer: Handle<Expression>,
ty: Handle<Type>,
f: &mut impl FnMut(
&mut Context,
Option<String>,
Handle<Expression>,
Handle<Type>,
crate::Binding,
),
) -> Result<()> {
match self.module.types[ty].inner {
// TODO: Better error reporting
// right now we just don't walk the array if the size isn't known at
// compile time and let validation catch it
TypeInner::Array {
base,
size: crate::ArraySize::Constant(size),
..
} => {
let mut location = match binding {
crate::Binding::Location { location, .. } => location,
crate::Binding::BuiltIn(_) => return Ok(()),
};
let interpolation =
self.module.types[base]
.inner
.scalar_kind()
.map(|kind| match kind {
ScalarKind::Float => crate::Interpolation::Perspective,
_ => crate::Interpolation::Flat,
});
for index in 0..size.get() {
let member_pointer = self.add_expression(
Expression::AccessIndex {
base: pointer,
index,
},
Span::default(),
)?;
let binding = crate::Binding::Location {
location,
interpolation,
sampling: None,
second_blend_source: false,
};
location += 1;
self.arg_type_walker(name.clone(), binding, member_pointer, base, f)?
}
}
TypeInner::Struct { ref members, .. } => {
let mut location = match binding {
crate::Binding::Location { location, .. } => location,
crate::Binding::BuiltIn(_) => return Ok(()),
};
for (i, member) in members.clone().into_iter().enumerate() {
let member_pointer = self.add_expression(
Expression::AccessIndex {
base: pointer,
index: i as u32,
},
Span::default(),
)?;
let binding = match member.binding {
Some(binding) => binding,
None => {
let interpolation = self.module.types[member.ty]
.inner
.scalar_kind()
.map(|kind| match kind {
ScalarKind::Float => crate::Interpolation::Perspective,
_ => crate::Interpolation::Flat,
});
let binding = crate::Binding::Location {
location,
interpolation,
sampling: None,
second_blend_source: false,
};
location += 1;
binding
}
};
self.arg_type_walker(member.name, binding, member_pointer, member.ty, f)?
}
}
_ => f(self, name, pointer, ty, binding),
}
Ok(())
}
}
/// Helper enum containing the type of conversion need for a call
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
enum Conversion {
/// No conversion needed
Exact,
/// Float to double conversion needed
FloatToDouble,
/// Int or uint to float conversion needed
IntToFloat,
/// Int or uint to double conversion needed
IntToDouble,
/// Other type of conversion needed
Other,
/// No conversion was yet registered
None,
}
/// Helper function, returns the type of conversion from `source` to `target`, if a
/// conversion is not possible returns None.
fn conversion(target: &TypeInner, source: &TypeInner) -> Option<Conversion> {
use ScalarKind::*;
// Gather the `ScalarKind` and scalar width from both the target and the source
let (target_scalar, source_scalar) = match (target, source) {
// Conversions between scalars are allowed
(&TypeInner::Scalar(tgt_scalar), &TypeInner::Scalar(src_scalar)) => {
(tgt_scalar, src_scalar)
}
// Conversions between vectors of the same size are allowed
(
&TypeInner::Vector {
size: tgt_size,
scalar: tgt_scalar,
},
&TypeInner::Vector {
size: src_size,
scalar: src_scalar,
},
) if tgt_size == src_size => (tgt_scalar, src_scalar),
// Conversions between matrices of the same size are allowed
(
&TypeInner::Matrix {
rows: tgt_rows,
columns: tgt_cols,
scalar: tgt_scalar,
},
&TypeInner::Matrix {
rows: src_rows,
columns: src_cols,
scalar: src_scalar,
},
) if tgt_cols == src_cols && tgt_rows == src_rows => (tgt_scalar, src_scalar),
_ => return None,
};
// Check if source can be converted into target, if this is the case then the type
// power of target must be higher than that of source
let target_power = type_power(target_scalar);
let source_power = type_power(source_scalar);
if target_power < source_power {
return None;
}
Some(match (target_scalar, source_scalar) {
// A conversion from a float to a double is special
(Scalar::F64, Scalar::F32) => Conversion::FloatToDouble,
// A conversion from an integer to a float is special
(
Scalar::F32,
Scalar {
kind: Sint | Uint,
width: _,
},
) => Conversion::IntToFloat,
// A conversion from an integer to a double is special
(
Scalar::F64,
Scalar {
kind: Sint | Uint,
width: _,
},
) => Conversion::IntToDouble,
_ => Conversion::Other,
})
}
/// Helper method returning all the non standard builtin variations needed
/// to process the function call with the passed arguments
fn builtin_required_variations<'a>(args: impl Iterator<Item = &'a TypeInner>) -> BuiltinVariations {
let mut variations = BuiltinVariations::empty();
for ty in args {
match *ty {
TypeInner::ValuePointer { scalar, .. }
| TypeInner::Scalar(scalar)
| TypeInner::Vector { scalar, .. }
| TypeInner::Matrix { scalar, .. } => {
if scalar == Scalar::F64 {
variations |= BuiltinVariations::DOUBLE
}
}
TypeInner::Image {
dim,
arrayed,
class,
} => {
if dim == crate::ImageDimension::Cube && arrayed {
variations |= BuiltinVariations::CUBE_TEXTURES_ARRAY
}
if dim == crate::ImageDimension::D2 && arrayed && class.is_multisampled() {
variations |= BuiltinVariations::D2_MULTI_TEXTURES_ARRAY
}
}
_ => {}
}
}
variations
}