naga/proc/
mod.rs

1/*!
2[`Module`](super::Module) processing functionality.
3*/
4
5mod constant_evaluator;
6mod emitter;
7pub mod index;
8mod layouter;
9mod namer;
10mod overloads;
11mod terminator;
12mod type_methods;
13mod typifier;
14
15pub use constant_evaluator::{
16    ConstantEvaluator, ConstantEvaluatorError, ExpressionKind, ExpressionKindTracker,
17};
18pub use emitter::Emitter;
19pub use index::{BoundsCheckPolicies, BoundsCheckPolicy, IndexableLength, IndexableLengthError};
20pub use layouter::{Alignment, LayoutError, LayoutErrorInner, Layouter, TypeLayout};
21pub use namer::{EntryPointIndex, NameKey, Namer};
22pub use overloads::{Conclusion, MissingSpecialType, OverloadSet, Rule};
23pub use terminator::ensure_block_returns;
24use thiserror::Error;
25pub use type_methods::min_max_float_representable_by;
26pub use typifier::{compare_types, ResolveContext, ResolveError, TypeResolution};
27
28impl From<super::StorageFormat> for super::Scalar {
29    fn from(format: super::StorageFormat) -> Self {
30        use super::{ScalarKind as Sk, StorageFormat as Sf};
31        let kind = match format {
32            Sf::R8Unorm => Sk::Float,
33            Sf::R8Snorm => Sk::Float,
34            Sf::R8Uint => Sk::Uint,
35            Sf::R8Sint => Sk::Sint,
36            Sf::R16Uint => Sk::Uint,
37            Sf::R16Sint => Sk::Sint,
38            Sf::R16Float => Sk::Float,
39            Sf::Rg8Unorm => Sk::Float,
40            Sf::Rg8Snorm => Sk::Float,
41            Sf::Rg8Uint => Sk::Uint,
42            Sf::Rg8Sint => Sk::Sint,
43            Sf::R32Uint => Sk::Uint,
44            Sf::R32Sint => Sk::Sint,
45            Sf::R32Float => Sk::Float,
46            Sf::Rg16Uint => Sk::Uint,
47            Sf::Rg16Sint => Sk::Sint,
48            Sf::Rg16Float => Sk::Float,
49            Sf::Rgba8Unorm => Sk::Float,
50            Sf::Rgba8Snorm => Sk::Float,
51            Sf::Rgba8Uint => Sk::Uint,
52            Sf::Rgba8Sint => Sk::Sint,
53            Sf::Bgra8Unorm => Sk::Float,
54            Sf::Rgb10a2Uint => Sk::Uint,
55            Sf::Rgb10a2Unorm => Sk::Float,
56            Sf::Rg11b10Ufloat => Sk::Float,
57            Sf::R64Uint => Sk::Uint,
58            Sf::Rg32Uint => Sk::Uint,
59            Sf::Rg32Sint => Sk::Sint,
60            Sf::Rg32Float => Sk::Float,
61            Sf::Rgba16Uint => Sk::Uint,
62            Sf::Rgba16Sint => Sk::Sint,
63            Sf::Rgba16Float => Sk::Float,
64            Sf::Rgba32Uint => Sk::Uint,
65            Sf::Rgba32Sint => Sk::Sint,
66            Sf::Rgba32Float => Sk::Float,
67            Sf::R16Unorm => Sk::Float,
68            Sf::R16Snorm => Sk::Float,
69            Sf::Rg16Unorm => Sk::Float,
70            Sf::Rg16Snorm => Sk::Float,
71            Sf::Rgba16Unorm => Sk::Float,
72            Sf::Rgba16Snorm => Sk::Float,
73        };
74        let width = match format {
75            Sf::R64Uint => 8,
76            _ => 4,
77        };
78        super::Scalar { kind, width }
79    }
80}
81
82#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
83pub enum HashableLiteral {
84    F64(u64),
85    F32(u32),
86    F16(u16),
87    U32(u32),
88    I32(i32),
89    U64(u64),
90    I64(i64),
91    Bool(bool),
92    AbstractInt(i64),
93    AbstractFloat(u64),
94}
95
96impl From<crate::Literal> for HashableLiteral {
97    fn from(l: crate::Literal) -> Self {
98        match l {
99            crate::Literal::F64(v) => Self::F64(v.to_bits()),
100            crate::Literal::F32(v) => Self::F32(v.to_bits()),
101            crate::Literal::F16(v) => Self::F16(v.to_bits()),
102            crate::Literal::U32(v) => Self::U32(v),
103            crate::Literal::I32(v) => Self::I32(v),
104            crate::Literal::U64(v) => Self::U64(v),
105            crate::Literal::I64(v) => Self::I64(v),
106            crate::Literal::Bool(v) => Self::Bool(v),
107            crate::Literal::AbstractInt(v) => Self::AbstractInt(v),
108            crate::Literal::AbstractFloat(v) => Self::AbstractFloat(v.to_bits()),
109        }
110    }
111}
112
113impl crate::Literal {
114    pub const fn new(value: u8, scalar: crate::Scalar) -> Option<Self> {
115        match (value, scalar.kind, scalar.width) {
116            (value, crate::ScalarKind::Float, 8) => Some(Self::F64(value as _)),
117            (value, crate::ScalarKind::Float, 4) => Some(Self::F32(value as _)),
118            (value, crate::ScalarKind::Uint, 4) => Some(Self::U32(value as _)),
119            (value, crate::ScalarKind::Sint, 4) => Some(Self::I32(value as _)),
120            (value, crate::ScalarKind::Uint, 8) => Some(Self::U64(value as _)),
121            (value, crate::ScalarKind::Sint, 8) => Some(Self::I64(value as _)),
122            (1, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(true)),
123            (0, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(false)),
124            (value, crate::ScalarKind::AbstractInt, 8) => Some(Self::AbstractInt(value as _)),
125            (value, crate::ScalarKind::AbstractFloat, 8) => Some(Self::AbstractFloat(value as _)),
126            _ => None,
127        }
128    }
129
130    pub const fn zero(scalar: crate::Scalar) -> Option<Self> {
131        Self::new(0, scalar)
132    }
133
134    pub const fn one(scalar: crate::Scalar) -> Option<Self> {
135        Self::new(1, scalar)
136    }
137
138    pub const fn width(&self) -> crate::Bytes {
139        match *self {
140            Self::F64(_) | Self::I64(_) | Self::U64(_) => 8,
141            Self::F32(_) | Self::U32(_) | Self::I32(_) => 4,
142            Self::F16(_) => 2,
143            Self::Bool(_) => crate::BOOL_WIDTH,
144            Self::AbstractInt(_) | Self::AbstractFloat(_) => crate::ABSTRACT_WIDTH,
145        }
146    }
147    pub const fn scalar(&self) -> crate::Scalar {
148        match *self {
149            Self::F64(_) => crate::Scalar::F64,
150            Self::F32(_) => crate::Scalar::F32,
151            Self::F16(_) => crate::Scalar::F16,
152            Self::U32(_) => crate::Scalar::U32,
153            Self::I32(_) => crate::Scalar::I32,
154            Self::U64(_) => crate::Scalar::U64,
155            Self::I64(_) => crate::Scalar::I64,
156            Self::Bool(_) => crate::Scalar::BOOL,
157            Self::AbstractInt(_) => crate::Scalar::ABSTRACT_INT,
158            Self::AbstractFloat(_) => crate::Scalar::ABSTRACT_FLOAT,
159        }
160    }
161    pub const fn scalar_kind(&self) -> crate::ScalarKind {
162        self.scalar().kind
163    }
164    pub const fn ty_inner(&self) -> crate::TypeInner {
165        crate::TypeInner::Scalar(self.scalar())
166    }
167}
168
169impl super::AddressSpace {
170    pub fn access(self) -> crate::StorageAccess {
171        use crate::StorageAccess as Sa;
172        match self {
173            crate::AddressSpace::Function
174            | crate::AddressSpace::Private
175            | crate::AddressSpace::WorkGroup => Sa::LOAD | Sa::STORE,
176            crate::AddressSpace::Uniform => Sa::LOAD,
177            crate::AddressSpace::Storage { access } => access,
178            crate::AddressSpace::Handle => Sa::LOAD,
179            crate::AddressSpace::PushConstant => Sa::LOAD,
180        }
181    }
182}
183
184impl super::MathFunction {
185    pub const fn argument_count(&self) -> usize {
186        match *self {
187            // comparison
188            Self::Abs => 1,
189            Self::Min => 2,
190            Self::Max => 2,
191            Self::Clamp => 3,
192            Self::Saturate => 1,
193            // trigonometry
194            Self::Cos => 1,
195            Self::Cosh => 1,
196            Self::Sin => 1,
197            Self::Sinh => 1,
198            Self::Tan => 1,
199            Self::Tanh => 1,
200            Self::Acos => 1,
201            Self::Asin => 1,
202            Self::Atan => 1,
203            Self::Atan2 => 2,
204            Self::Asinh => 1,
205            Self::Acosh => 1,
206            Self::Atanh => 1,
207            Self::Radians => 1,
208            Self::Degrees => 1,
209            // decomposition
210            Self::Ceil => 1,
211            Self::Floor => 1,
212            Self::Round => 1,
213            Self::Fract => 1,
214            Self::Trunc => 1,
215            Self::Modf => 1,
216            Self::Frexp => 1,
217            Self::Ldexp => 2,
218            // exponent
219            Self::Exp => 1,
220            Self::Exp2 => 1,
221            Self::Log => 1,
222            Self::Log2 => 1,
223            Self::Pow => 2,
224            // geometry
225            Self::Dot => 2,
226            Self::Dot4I8Packed => 2,
227            Self::Dot4U8Packed => 2,
228            Self::Outer => 2,
229            Self::Cross => 2,
230            Self::Distance => 2,
231            Self::Length => 1,
232            Self::Normalize => 1,
233            Self::FaceForward => 3,
234            Self::Reflect => 2,
235            Self::Refract => 3,
236            // computational
237            Self::Sign => 1,
238            Self::Fma => 3,
239            Self::Mix => 3,
240            Self::Step => 2,
241            Self::SmoothStep => 3,
242            Self::Sqrt => 1,
243            Self::InverseSqrt => 1,
244            Self::Inverse => 1,
245            Self::Transpose => 1,
246            Self::Determinant => 1,
247            Self::QuantizeToF16 => 1,
248            // bits
249            Self::CountTrailingZeros => 1,
250            Self::CountLeadingZeros => 1,
251            Self::CountOneBits => 1,
252            Self::ReverseBits => 1,
253            Self::ExtractBits => 3,
254            Self::InsertBits => 4,
255            Self::FirstTrailingBit => 1,
256            Self::FirstLeadingBit => 1,
257            // data packing
258            Self::Pack4x8snorm => 1,
259            Self::Pack4x8unorm => 1,
260            Self::Pack2x16snorm => 1,
261            Self::Pack2x16unorm => 1,
262            Self::Pack2x16float => 1,
263            Self::Pack4xI8 => 1,
264            Self::Pack4xU8 => 1,
265            Self::Pack4xI8Clamp => 1,
266            Self::Pack4xU8Clamp => 1,
267            // data unpacking
268            Self::Unpack4x8snorm => 1,
269            Self::Unpack4x8unorm => 1,
270            Self::Unpack2x16snorm => 1,
271            Self::Unpack2x16unorm => 1,
272            Self::Unpack2x16float => 1,
273            Self::Unpack4xI8 => 1,
274            Self::Unpack4xU8 => 1,
275        }
276    }
277}
278
279impl crate::Expression {
280    /// Returns true if the expression is considered emitted at the start of a function.
281    pub const fn needs_pre_emit(&self) -> bool {
282        match *self {
283            Self::Literal(_)
284            | Self::Constant(_)
285            | Self::Override(_)
286            | Self::ZeroValue(_)
287            | Self::FunctionArgument(_)
288            | Self::GlobalVariable(_)
289            | Self::LocalVariable(_) => true,
290            _ => false,
291        }
292    }
293
294    /// Return true if this expression is a dynamic array/vector/matrix index,
295    /// for [`Access`].
296    ///
297    /// This method returns true if this expression is a dynamically computed
298    /// index, and as such can only be used to index matrices when they appear
299    /// behind a pointer. See the documentation for [`Access`] for details.
300    ///
301    /// Note, this does not check the _type_ of the given expression. It's up to
302    /// the caller to establish that the `Access` expression is well-typed
303    /// through other means, like [`ResolveContext`].
304    ///
305    /// [`Access`]: crate::Expression::Access
306    /// [`ResolveContext`]: crate::proc::ResolveContext
307    pub const fn is_dynamic_index(&self) -> bool {
308        match *self {
309            Self::Literal(_) | Self::ZeroValue(_) | Self::Constant(_) => false,
310            _ => true,
311        }
312    }
313}
314
315impl crate::Function {
316    /// Return the global variable being accessed by the expression `pointer`.
317    ///
318    /// Assuming that `pointer` is a series of `Access` and `AccessIndex`
319    /// expressions that ultimately access some part of a `GlobalVariable`,
320    /// return a handle for that global.
321    ///
322    /// If the expression does not ultimately access a global variable, return
323    /// `None`.
324    pub fn originating_global(
325        &self,
326        mut pointer: crate::Handle<crate::Expression>,
327    ) -> Option<crate::Handle<crate::GlobalVariable>> {
328        loop {
329            pointer = match self.expressions[pointer] {
330                crate::Expression::Access { base, .. } => base,
331                crate::Expression::AccessIndex { base, .. } => base,
332                crate::Expression::GlobalVariable(handle) => return Some(handle),
333                crate::Expression::LocalVariable(_) => return None,
334                crate::Expression::FunctionArgument(_) => return None,
335                // There are no other expressions that produce pointer values.
336                _ => unreachable!(),
337            }
338        }
339    }
340}
341
342impl crate::SampleLevel {
343    pub const fn implicit_derivatives(&self) -> bool {
344        match *self {
345            Self::Auto | Self::Bias(_) => true,
346            Self::Zero | Self::Exact(_) | Self::Gradient { .. } => false,
347        }
348    }
349}
350
351impl crate::Binding {
352    pub const fn to_built_in(&self) -> Option<crate::BuiltIn> {
353        match *self {
354            crate::Binding::BuiltIn(built_in) => Some(built_in),
355            Self::Location { .. } => None,
356        }
357    }
358}
359
360impl super::SwizzleComponent {
361    pub const XYZW: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
362
363    pub const fn index(&self) -> u32 {
364        match *self {
365            Self::X => 0,
366            Self::Y => 1,
367            Self::Z => 2,
368            Self::W => 3,
369        }
370    }
371    pub const fn from_index(idx: u32) -> Self {
372        match idx {
373            0 => Self::X,
374            1 => Self::Y,
375            2 => Self::Z,
376            _ => Self::W,
377        }
378    }
379}
380
381impl super::ImageClass {
382    pub const fn is_multisampled(self) -> bool {
383        match self {
384            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => multi,
385            crate::ImageClass::Storage { .. } => false,
386        }
387    }
388
389    pub const fn is_mipmapped(self) -> bool {
390        match self {
391            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => !multi,
392            crate::ImageClass::Storage { .. } => false,
393        }
394    }
395
396    pub const fn is_depth(self) -> bool {
397        matches!(self, crate::ImageClass::Depth { .. })
398    }
399}
400
401impl crate::Module {
402    pub const fn to_ctx(&self) -> GlobalCtx<'_> {
403        GlobalCtx {
404            types: &self.types,
405            constants: &self.constants,
406            overrides: &self.overrides,
407            global_expressions: &self.global_expressions,
408        }
409    }
410
411    pub fn compare_types(&self, lhs: &TypeResolution, rhs: &TypeResolution) -> bool {
412        compare_types(lhs, rhs, &self.types)
413    }
414}
415
416#[derive(Debug)]
417pub(super) enum U32EvalError {
418    NonConst,
419    Negative,
420}
421
422#[derive(Clone, Copy)]
423pub struct GlobalCtx<'a> {
424    pub types: &'a crate::UniqueArena<crate::Type>,
425    pub constants: &'a crate::Arena<crate::Constant>,
426    pub overrides: &'a crate::Arena<crate::Override>,
427    pub global_expressions: &'a crate::Arena<crate::Expression>,
428}
429
430impl GlobalCtx<'_> {
431    /// Try to evaluate the expression in `self.global_expressions` using its `handle` and return it as a `u32`.
432    #[allow(dead_code)]
433    pub(super) fn eval_expr_to_u32(
434        &self,
435        handle: crate::Handle<crate::Expression>,
436    ) -> Result<u32, U32EvalError> {
437        self.eval_expr_to_u32_from(handle, self.global_expressions)
438    }
439
440    /// Try to evaluate the expression in the `arena` using its `handle` and return it as a `u32`.
441    pub(super) fn eval_expr_to_u32_from(
442        &self,
443        handle: crate::Handle<crate::Expression>,
444        arena: &crate::Arena<crate::Expression>,
445    ) -> Result<u32, U32EvalError> {
446        match self.eval_expr_to_literal_from(handle, arena) {
447            Some(crate::Literal::U32(value)) => Ok(value),
448            Some(crate::Literal::I32(value)) => {
449                value.try_into().map_err(|_| U32EvalError::Negative)
450            }
451            _ => Err(U32EvalError::NonConst),
452        }
453    }
454
455    /// Try to evaluate the expression in the `arena` using its `handle` and return it as a `bool`.
456    #[allow(dead_code)]
457    pub(super) fn eval_expr_to_bool_from(
458        &self,
459        handle: crate::Handle<crate::Expression>,
460        arena: &crate::Arena<crate::Expression>,
461    ) -> Option<bool> {
462        match self.eval_expr_to_literal_from(handle, arena) {
463            Some(crate::Literal::Bool(value)) => Some(value),
464            _ => None,
465        }
466    }
467
468    #[allow(dead_code)]
469    pub(crate) fn eval_expr_to_literal(
470        &self,
471        handle: crate::Handle<crate::Expression>,
472    ) -> Option<crate::Literal> {
473        self.eval_expr_to_literal_from(handle, self.global_expressions)
474    }
475
476    pub(super) fn eval_expr_to_literal_from(
477        &self,
478        handle: crate::Handle<crate::Expression>,
479        arena: &crate::Arena<crate::Expression>,
480    ) -> Option<crate::Literal> {
481        fn get(
482            gctx: GlobalCtx,
483            handle: crate::Handle<crate::Expression>,
484            arena: &crate::Arena<crate::Expression>,
485        ) -> Option<crate::Literal> {
486            match arena[handle] {
487                crate::Expression::Literal(literal) => Some(literal),
488                crate::Expression::ZeroValue(ty) => match gctx.types[ty].inner {
489                    crate::TypeInner::Scalar(scalar) => crate::Literal::zero(scalar),
490                    _ => None,
491                },
492                _ => None,
493            }
494        }
495        match arena[handle] {
496            crate::Expression::Constant(c) => {
497                get(*self, self.constants[c].init, self.global_expressions)
498            }
499            _ => get(*self, handle, arena),
500        }
501    }
502
503    pub fn compare_types(&self, lhs: &TypeResolution, rhs: &TypeResolution) -> bool {
504        compare_types(lhs, rhs, self.types)
505    }
506}
507
508#[derive(Error, Debug, Clone, Copy, PartialEq)]
509pub enum ResolveArraySizeError {
510    #[error("array element count must be positive (> 0)")]
511    ExpectedPositiveArrayLength,
512    #[error("internal: array size override has not been resolved")]
513    NonConstArrayLength,
514}
515
516impl crate::ArraySize {
517    /// Return the number of elements that `size` represents, if known at code generation time.
518    ///
519    /// If `size` is override-based, return an error unless the override's
520    /// initializer is a fully evaluated constant expression. You can call
521    /// [`pipeline_constants::process_overrides`] to supply values for a
522    /// module's overrides and ensure their initializers are fully evaluated, as
523    /// this function expects.
524    ///
525    /// [`pipeline_constants::process_overrides`]: crate::back::pipeline_constants::process_overrides
526    pub fn resolve(&self, gctx: GlobalCtx) -> Result<IndexableLength, ResolveArraySizeError> {
527        match *self {
528            crate::ArraySize::Constant(length) => Ok(IndexableLength::Known(length.get())),
529            crate::ArraySize::Pending(handle) => {
530                let Some(expr) = gctx.overrides[handle].init else {
531                    return Err(ResolveArraySizeError::NonConstArrayLength);
532                };
533                let length = gctx.eval_expr_to_u32(expr).map_err(|err| match err {
534                    U32EvalError::NonConst => ResolveArraySizeError::NonConstArrayLength,
535                    U32EvalError::Negative => ResolveArraySizeError::ExpectedPositiveArrayLength,
536                })?;
537
538                if length == 0 {
539                    return Err(ResolveArraySizeError::ExpectedPositiveArrayLength);
540                }
541
542                Ok(IndexableLength::Known(length))
543            }
544            crate::ArraySize::Dynamic => Ok(IndexableLength::Dynamic),
545        }
546    }
547}
548
549/// Return an iterator over the individual components assembled by a
550/// `Compose` expression.
551///
552/// Given `ty` and `components` from an `Expression::Compose`, return an
553/// iterator over the components of the resulting value.
554///
555/// Normally, this would just be an iterator over `components`. However,
556/// `Compose` expressions can concatenate vectors, in which case the i'th
557/// value being composed is not generally the i'th element of `components`.
558/// This function consults `ty` to decide if this concatenation is occurring,
559/// and returns an iterator that produces the components of the result of
560/// the `Compose` expression in either case.
561pub fn flatten_compose<'arenas>(
562    ty: crate::Handle<crate::Type>,
563    components: &'arenas [crate::Handle<crate::Expression>],
564    expressions: &'arenas crate::Arena<crate::Expression>,
565    types: &'arenas crate::UniqueArena<crate::Type>,
566) -> impl Iterator<Item = crate::Handle<crate::Expression>> + 'arenas {
567    // Returning `impl Iterator` is a bit tricky. We may or may not
568    // want to flatten the components, but we have to settle on a
569    // single concrete type to return. This function returns a single
570    // iterator chain that handles both the flattening and
571    // non-flattening cases.
572    let (size, is_vector) = if let crate::TypeInner::Vector { size, .. } = types[ty].inner {
573        (size as usize, true)
574    } else {
575        (components.len(), false)
576    };
577
578    /// Flatten `Compose` expressions if `is_vector` is true.
579    fn flatten_compose<'c>(
580        component: &'c crate::Handle<crate::Expression>,
581        is_vector: bool,
582        expressions: &'c crate::Arena<crate::Expression>,
583    ) -> &'c [crate::Handle<crate::Expression>] {
584        if is_vector {
585            if let crate::Expression::Compose {
586                ty: _,
587                components: ref subcomponents,
588            } = expressions[*component]
589            {
590                return subcomponents;
591            }
592        }
593        core::slice::from_ref(component)
594    }
595
596    /// Flatten `Splat` expressions if `is_vector` is true.
597    fn flatten_splat<'c>(
598        component: &'c crate::Handle<crate::Expression>,
599        is_vector: bool,
600        expressions: &'c crate::Arena<crate::Expression>,
601    ) -> impl Iterator<Item = crate::Handle<crate::Expression>> {
602        let mut expr = *component;
603        let mut count = 1;
604        if is_vector {
605            if let crate::Expression::Splat { size, value } = expressions[expr] {
606                expr = value;
607                count = size as usize;
608            }
609        }
610        core::iter::repeat_n(expr, count)
611    }
612
613    // Expressions like `vec4(vec3(vec2(6, 7), 8), 9)` require us to
614    // flatten up to two levels of `Compose` expressions.
615    //
616    // Expressions like `vec4(vec3(1.0), 1.0)` require us to flatten
617    // `Splat` expressions. Fortunately, the operand of a `Splat` must
618    // be a scalar, so we can stop there.
619    components
620        .iter()
621        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
622        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
623        .flat_map(move |component| flatten_splat(component, is_vector, expressions))
624        .take(size)
625}
626
627#[test]
628fn test_matrix_size() {
629    let module = crate::Module::default();
630    assert_eq!(
631        crate::TypeInner::Matrix {
632            columns: crate::VectorSize::Tri,
633            rows: crate::VectorSize::Tri,
634            scalar: crate::Scalar::F32,
635        }
636        .size(module.to_ctx()),
637        48,
638    );
639}