naga/proc/
mod.rs

1/*!
2[`Module`](super::Module) processing functionality.
3*/
4
5mod constant_evaluator;
6mod emitter;
7pub mod index;
8mod keyword_set;
9mod layouter;
10mod namer;
11mod overloads;
12mod terminator;
13mod type_methods;
14mod typifier;
15
16pub use constant_evaluator::{
17    ConstantEvaluator, ConstantEvaluatorError, ExpressionKind, ExpressionKindTracker,
18};
19pub use emitter::Emitter;
20pub use index::{BoundsCheckPolicies, BoundsCheckPolicy, IndexableLength, IndexableLengthError};
21pub use keyword_set::{CaseInsensitiveKeywordSet, KeywordSet};
22pub use layouter::{Alignment, LayoutError, LayoutErrorInner, Layouter, TypeLayout};
23pub use namer::{EntryPointIndex, ExternalTextureNameKey, NameKey, Namer};
24pub use overloads::{Conclusion, MissingSpecialType, OverloadSet, Rule};
25pub use terminator::ensure_block_returns;
26use thiserror::Error;
27pub use type_methods::min_max_float_representable_by;
28pub use typifier::{compare_types, ResolveContext, ResolveError, TypeResolution};
29
30impl From<super::StorageFormat> for super::Scalar {
31    fn from(format: super::StorageFormat) -> Self {
32        use super::{ScalarKind as Sk, StorageFormat as Sf};
33        let kind = match format {
34            Sf::R8Unorm => Sk::Float,
35            Sf::R8Snorm => Sk::Float,
36            Sf::R8Uint => Sk::Uint,
37            Sf::R8Sint => Sk::Sint,
38            Sf::R16Uint => Sk::Uint,
39            Sf::R16Sint => Sk::Sint,
40            Sf::R16Float => Sk::Float,
41            Sf::Rg8Unorm => Sk::Float,
42            Sf::Rg8Snorm => Sk::Float,
43            Sf::Rg8Uint => Sk::Uint,
44            Sf::Rg8Sint => Sk::Sint,
45            Sf::R32Uint => Sk::Uint,
46            Sf::R32Sint => Sk::Sint,
47            Sf::R32Float => Sk::Float,
48            Sf::Rg16Uint => Sk::Uint,
49            Sf::Rg16Sint => Sk::Sint,
50            Sf::Rg16Float => Sk::Float,
51            Sf::Rgba8Unorm => Sk::Float,
52            Sf::Rgba8Snorm => Sk::Float,
53            Sf::Rgba8Uint => Sk::Uint,
54            Sf::Rgba8Sint => Sk::Sint,
55            Sf::Bgra8Unorm => Sk::Float,
56            Sf::Rgb10a2Uint => Sk::Uint,
57            Sf::Rgb10a2Unorm => Sk::Float,
58            Sf::Rg11b10Ufloat => Sk::Float,
59            Sf::R64Uint => Sk::Uint,
60            Sf::Rg32Uint => Sk::Uint,
61            Sf::Rg32Sint => Sk::Sint,
62            Sf::Rg32Float => Sk::Float,
63            Sf::Rgba16Uint => Sk::Uint,
64            Sf::Rgba16Sint => Sk::Sint,
65            Sf::Rgba16Float => Sk::Float,
66            Sf::Rgba32Uint => Sk::Uint,
67            Sf::Rgba32Sint => Sk::Sint,
68            Sf::Rgba32Float => Sk::Float,
69            Sf::R16Unorm => Sk::Float,
70            Sf::R16Snorm => Sk::Float,
71            Sf::Rg16Unorm => Sk::Float,
72            Sf::Rg16Snorm => Sk::Float,
73            Sf::Rgba16Unorm => Sk::Float,
74            Sf::Rgba16Snorm => Sk::Float,
75        };
76        let width = match format {
77            Sf::R64Uint => 8,
78            _ => 4,
79        };
80        super::Scalar { kind, width }
81    }
82}
83
84#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
85pub enum HashableLiteral {
86    F64(u64),
87    F32(u32),
88    F16(u16),
89    U32(u32),
90    I32(i32),
91    U64(u64),
92    I64(i64),
93    Bool(bool),
94    AbstractInt(i64),
95    AbstractFloat(u64),
96}
97
98impl From<crate::Literal> for HashableLiteral {
99    fn from(l: crate::Literal) -> Self {
100        match l {
101            crate::Literal::F64(v) => Self::F64(v.to_bits()),
102            crate::Literal::F32(v) => Self::F32(v.to_bits()),
103            crate::Literal::F16(v) => Self::F16(v.to_bits()),
104            crate::Literal::U32(v) => Self::U32(v),
105            crate::Literal::I32(v) => Self::I32(v),
106            crate::Literal::U64(v) => Self::U64(v),
107            crate::Literal::I64(v) => Self::I64(v),
108            crate::Literal::Bool(v) => Self::Bool(v),
109            crate::Literal::AbstractInt(v) => Self::AbstractInt(v),
110            crate::Literal::AbstractFloat(v) => Self::AbstractFloat(v.to_bits()),
111        }
112    }
113}
114
115impl crate::Literal {
116    pub const fn new(value: u8, scalar: crate::Scalar) -> Option<Self> {
117        match (value, scalar.kind, scalar.width) {
118            (value, crate::ScalarKind::Float, 8) => Some(Self::F64(value as _)),
119            (value, crate::ScalarKind::Float, 4) => Some(Self::F32(value as _)),
120            (value, crate::ScalarKind::Uint, 4) => Some(Self::U32(value as _)),
121            (value, crate::ScalarKind::Sint, 4) => Some(Self::I32(value as _)),
122            (value, crate::ScalarKind::Uint, 8) => Some(Self::U64(value as _)),
123            (value, crate::ScalarKind::Sint, 8) => Some(Self::I64(value as _)),
124            (1, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(true)),
125            (0, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(false)),
126            (value, crate::ScalarKind::AbstractInt, 8) => Some(Self::AbstractInt(value as _)),
127            (value, crate::ScalarKind::AbstractFloat, 8) => Some(Self::AbstractFloat(value as _)),
128            _ => None,
129        }
130    }
131
132    pub const fn zero(scalar: crate::Scalar) -> Option<Self> {
133        Self::new(0, scalar)
134    }
135
136    pub const fn one(scalar: crate::Scalar) -> Option<Self> {
137        Self::new(1, scalar)
138    }
139
140    pub const fn width(&self) -> crate::Bytes {
141        match *self {
142            Self::F64(_) | Self::I64(_) | Self::U64(_) => 8,
143            Self::F32(_) | Self::U32(_) | Self::I32(_) => 4,
144            Self::F16(_) => 2,
145            Self::Bool(_) => crate::BOOL_WIDTH,
146            Self::AbstractInt(_) | Self::AbstractFloat(_) => crate::ABSTRACT_WIDTH,
147        }
148    }
149    pub const fn scalar(&self) -> crate::Scalar {
150        match *self {
151            Self::F64(_) => crate::Scalar::F64,
152            Self::F32(_) => crate::Scalar::F32,
153            Self::F16(_) => crate::Scalar::F16,
154            Self::U32(_) => crate::Scalar::U32,
155            Self::I32(_) => crate::Scalar::I32,
156            Self::U64(_) => crate::Scalar::U64,
157            Self::I64(_) => crate::Scalar::I64,
158            Self::Bool(_) => crate::Scalar::BOOL,
159            Self::AbstractInt(_) => crate::Scalar::ABSTRACT_INT,
160            Self::AbstractFloat(_) => crate::Scalar::ABSTRACT_FLOAT,
161        }
162    }
163    pub const fn scalar_kind(&self) -> crate::ScalarKind {
164        self.scalar().kind
165    }
166    pub const fn ty_inner(&self) -> crate::TypeInner {
167        crate::TypeInner::Scalar(self.scalar())
168    }
169}
170
171impl super::AddressSpace {
172    pub fn access(self) -> crate::StorageAccess {
173        use crate::StorageAccess as Sa;
174        match self {
175            crate::AddressSpace::Function
176            | crate::AddressSpace::Private
177            | crate::AddressSpace::WorkGroup => Sa::LOAD | Sa::STORE,
178            crate::AddressSpace::Uniform => Sa::LOAD,
179            crate::AddressSpace::Storage { access } => access,
180            crate::AddressSpace::Handle => Sa::LOAD,
181            crate::AddressSpace::PushConstant => Sa::LOAD,
182        }
183    }
184}
185
186impl super::MathFunction {
187    pub const fn argument_count(&self) -> usize {
188        match *self {
189            // comparison
190            Self::Abs => 1,
191            Self::Min => 2,
192            Self::Max => 2,
193            Self::Clamp => 3,
194            Self::Saturate => 1,
195            // trigonometry
196            Self::Cos => 1,
197            Self::Cosh => 1,
198            Self::Sin => 1,
199            Self::Sinh => 1,
200            Self::Tan => 1,
201            Self::Tanh => 1,
202            Self::Acos => 1,
203            Self::Asin => 1,
204            Self::Atan => 1,
205            Self::Atan2 => 2,
206            Self::Asinh => 1,
207            Self::Acosh => 1,
208            Self::Atanh => 1,
209            Self::Radians => 1,
210            Self::Degrees => 1,
211            // decomposition
212            Self::Ceil => 1,
213            Self::Floor => 1,
214            Self::Round => 1,
215            Self::Fract => 1,
216            Self::Trunc => 1,
217            Self::Modf => 1,
218            Self::Frexp => 1,
219            Self::Ldexp => 2,
220            // exponent
221            Self::Exp => 1,
222            Self::Exp2 => 1,
223            Self::Log => 1,
224            Self::Log2 => 1,
225            Self::Pow => 2,
226            // geometry
227            Self::Dot => 2,
228            Self::Dot4I8Packed => 2,
229            Self::Dot4U8Packed => 2,
230            Self::Outer => 2,
231            Self::Cross => 2,
232            Self::Distance => 2,
233            Self::Length => 1,
234            Self::Normalize => 1,
235            Self::FaceForward => 3,
236            Self::Reflect => 2,
237            Self::Refract => 3,
238            // computational
239            Self::Sign => 1,
240            Self::Fma => 3,
241            Self::Mix => 3,
242            Self::Step => 2,
243            Self::SmoothStep => 3,
244            Self::Sqrt => 1,
245            Self::InverseSqrt => 1,
246            Self::Inverse => 1,
247            Self::Transpose => 1,
248            Self::Determinant => 1,
249            Self::QuantizeToF16 => 1,
250            // bits
251            Self::CountTrailingZeros => 1,
252            Self::CountLeadingZeros => 1,
253            Self::CountOneBits => 1,
254            Self::ReverseBits => 1,
255            Self::ExtractBits => 3,
256            Self::InsertBits => 4,
257            Self::FirstTrailingBit => 1,
258            Self::FirstLeadingBit => 1,
259            // data packing
260            Self::Pack4x8snorm => 1,
261            Self::Pack4x8unorm => 1,
262            Self::Pack2x16snorm => 1,
263            Self::Pack2x16unorm => 1,
264            Self::Pack2x16float => 1,
265            Self::Pack4xI8 => 1,
266            Self::Pack4xU8 => 1,
267            Self::Pack4xI8Clamp => 1,
268            Self::Pack4xU8Clamp => 1,
269            // data unpacking
270            Self::Unpack4x8snorm => 1,
271            Self::Unpack4x8unorm => 1,
272            Self::Unpack2x16snorm => 1,
273            Self::Unpack2x16unorm => 1,
274            Self::Unpack2x16float => 1,
275            Self::Unpack4xI8 => 1,
276            Self::Unpack4xU8 => 1,
277        }
278    }
279}
280
281impl crate::Expression {
282    /// Returns true if the expression is considered emitted at the start of a function.
283    pub const fn needs_pre_emit(&self) -> bool {
284        match *self {
285            Self::Literal(_)
286            | Self::Constant(_)
287            | Self::Override(_)
288            | Self::ZeroValue(_)
289            | Self::FunctionArgument(_)
290            | Self::GlobalVariable(_)
291            | Self::LocalVariable(_) => true,
292            _ => false,
293        }
294    }
295
296    /// Return true if this expression is a dynamic array/vector/matrix index,
297    /// for [`Access`].
298    ///
299    /// This method returns true if this expression is a dynamically computed
300    /// index, and as such can only be used to index matrices when they appear
301    /// behind a pointer. See the documentation for [`Access`] for details.
302    ///
303    /// Note, this does not check the _type_ of the given expression. It's up to
304    /// the caller to establish that the `Access` expression is well-typed
305    /// through other means, like [`ResolveContext`].
306    ///
307    /// [`Access`]: crate::Expression::Access
308    /// [`ResolveContext`]: crate::proc::ResolveContext
309    pub const fn is_dynamic_index(&self) -> bool {
310        match *self {
311            Self::Literal(_) | Self::ZeroValue(_) | Self::Constant(_) => false,
312            _ => true,
313        }
314    }
315}
316
317impl crate::Function {
318    /// Return the global variable being accessed by the expression `pointer`.
319    ///
320    /// Assuming that `pointer` is a series of `Access` and `AccessIndex`
321    /// expressions that ultimately access some part of a `GlobalVariable`,
322    /// return a handle for that global.
323    ///
324    /// If the expression does not ultimately access a global variable, return
325    /// `None`.
326    pub fn originating_global(
327        &self,
328        mut pointer: crate::Handle<crate::Expression>,
329    ) -> Option<crate::Handle<crate::GlobalVariable>> {
330        loop {
331            pointer = match self.expressions[pointer] {
332                crate::Expression::Access { base, .. } => base,
333                crate::Expression::AccessIndex { base, .. } => base,
334                crate::Expression::GlobalVariable(handle) => return Some(handle),
335                crate::Expression::LocalVariable(_) => return None,
336                crate::Expression::FunctionArgument(_) => return None,
337                // There are no other expressions that produce pointer values.
338                _ => unreachable!(),
339            }
340        }
341    }
342}
343
344impl crate::SampleLevel {
345    pub const fn implicit_derivatives(&self) -> bool {
346        match *self {
347            Self::Auto | Self::Bias(_) => true,
348            Self::Zero | Self::Exact(_) | Self::Gradient { .. } => false,
349        }
350    }
351}
352
353impl crate::Binding {
354    pub const fn to_built_in(&self) -> Option<crate::BuiltIn> {
355        match *self {
356            crate::Binding::BuiltIn(built_in) => Some(built_in),
357            Self::Location { .. } => None,
358        }
359    }
360}
361
362impl super::SwizzleComponent {
363    pub const XYZW: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
364
365    pub const fn index(&self) -> u32 {
366        match *self {
367            Self::X => 0,
368            Self::Y => 1,
369            Self::Z => 2,
370            Self::W => 3,
371        }
372    }
373    pub const fn from_index(idx: u32) -> Self {
374        match idx {
375            0 => Self::X,
376            1 => Self::Y,
377            2 => Self::Z,
378            _ => Self::W,
379        }
380    }
381}
382
383impl super::ImageClass {
384    pub const fn is_multisampled(self) -> bool {
385        match self {
386            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => multi,
387            crate::ImageClass::Storage { .. } => false,
388            crate::ImageClass::External => false,
389        }
390    }
391
392    pub const fn is_mipmapped(self) -> bool {
393        match self {
394            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => !multi,
395            crate::ImageClass::Storage { .. } => false,
396            crate::ImageClass::External => false,
397        }
398    }
399
400    pub const fn is_depth(self) -> bool {
401        matches!(self, crate::ImageClass::Depth { .. })
402    }
403}
404
405impl crate::Module {
406    pub const fn to_ctx(&self) -> GlobalCtx<'_> {
407        GlobalCtx {
408            types: &self.types,
409            constants: &self.constants,
410            overrides: &self.overrides,
411            global_expressions: &self.global_expressions,
412        }
413    }
414
415    pub fn compare_types(&self, lhs: &TypeResolution, rhs: &TypeResolution) -> bool {
416        compare_types(lhs, rhs, &self.types)
417    }
418}
419
420#[derive(Debug)]
421pub(super) enum U32EvalError {
422    NonConst,
423    Negative,
424}
425
426#[derive(Clone, Copy)]
427pub struct GlobalCtx<'a> {
428    pub types: &'a crate::UniqueArena<crate::Type>,
429    pub constants: &'a crate::Arena<crate::Constant>,
430    pub overrides: &'a crate::Arena<crate::Override>,
431    pub global_expressions: &'a crate::Arena<crate::Expression>,
432}
433
434impl GlobalCtx<'_> {
435    /// Try to evaluate the expression in `self.global_expressions` using its `handle` and return it as a `u32`.
436    #[allow(dead_code)]
437    pub(super) fn eval_expr_to_u32(
438        &self,
439        handle: crate::Handle<crate::Expression>,
440    ) -> Result<u32, U32EvalError> {
441        self.eval_expr_to_u32_from(handle, self.global_expressions)
442    }
443
444    /// Try to evaluate the expression in the `arena` using its `handle` and return it as a `u32`.
445    pub(super) fn eval_expr_to_u32_from(
446        &self,
447        handle: crate::Handle<crate::Expression>,
448        arena: &crate::Arena<crate::Expression>,
449    ) -> Result<u32, U32EvalError> {
450        match self.eval_expr_to_literal_from(handle, arena) {
451            Some(crate::Literal::U32(value)) => Ok(value),
452            Some(crate::Literal::I32(value)) => {
453                value.try_into().map_err(|_| U32EvalError::Negative)
454            }
455            _ => Err(U32EvalError::NonConst),
456        }
457    }
458
459    /// Try to evaluate the expression in the `arena` using its `handle` and return it as a `bool`.
460    #[allow(dead_code)]
461    pub(super) fn eval_expr_to_bool_from(
462        &self,
463        handle: crate::Handle<crate::Expression>,
464        arena: &crate::Arena<crate::Expression>,
465    ) -> Option<bool> {
466        match self.eval_expr_to_literal_from(handle, arena) {
467            Some(crate::Literal::Bool(value)) => Some(value),
468            _ => None,
469        }
470    }
471
472    #[allow(dead_code)]
473    pub(crate) fn eval_expr_to_literal(
474        &self,
475        handle: crate::Handle<crate::Expression>,
476    ) -> Option<crate::Literal> {
477        self.eval_expr_to_literal_from(handle, self.global_expressions)
478    }
479
480    pub(super) fn eval_expr_to_literal_from(
481        &self,
482        handle: crate::Handle<crate::Expression>,
483        arena: &crate::Arena<crate::Expression>,
484    ) -> Option<crate::Literal> {
485        fn get(
486            gctx: GlobalCtx,
487            handle: crate::Handle<crate::Expression>,
488            arena: &crate::Arena<crate::Expression>,
489        ) -> Option<crate::Literal> {
490            match arena[handle] {
491                crate::Expression::Literal(literal) => Some(literal),
492                crate::Expression::ZeroValue(ty) => match gctx.types[ty].inner {
493                    crate::TypeInner::Scalar(scalar) => crate::Literal::zero(scalar),
494                    _ => None,
495                },
496                _ => None,
497            }
498        }
499        match arena[handle] {
500            crate::Expression::Constant(c) => {
501                get(*self, self.constants[c].init, self.global_expressions)
502            }
503            _ => get(*self, handle, arena),
504        }
505    }
506
507    pub fn compare_types(&self, lhs: &TypeResolution, rhs: &TypeResolution) -> bool {
508        compare_types(lhs, rhs, self.types)
509    }
510}
511
512#[derive(Error, Debug, Clone, Copy, PartialEq)]
513pub enum ResolveArraySizeError {
514    #[error("array element count must be positive (> 0)")]
515    ExpectedPositiveArrayLength,
516    #[error("internal: array size override has not been resolved")]
517    NonConstArrayLength,
518}
519
520impl crate::ArraySize {
521    /// Return the number of elements that `size` represents, if known at code generation time.
522    ///
523    /// If `size` is override-based, return an error unless the override's
524    /// initializer is a fully evaluated constant expression. You can call
525    /// [`pipeline_constants::process_overrides`] to supply values for a
526    /// module's overrides and ensure their initializers are fully evaluated, as
527    /// this function expects.
528    ///
529    /// [`pipeline_constants::process_overrides`]: crate::back::pipeline_constants::process_overrides
530    pub fn resolve(&self, gctx: GlobalCtx) -> Result<IndexableLength, ResolveArraySizeError> {
531        match *self {
532            crate::ArraySize::Constant(length) => Ok(IndexableLength::Known(length.get())),
533            crate::ArraySize::Pending(handle) => {
534                let Some(expr) = gctx.overrides[handle].init else {
535                    return Err(ResolveArraySizeError::NonConstArrayLength);
536                };
537                let length = gctx.eval_expr_to_u32(expr).map_err(|err| match err {
538                    U32EvalError::NonConst => ResolveArraySizeError::NonConstArrayLength,
539                    U32EvalError::Negative => ResolveArraySizeError::ExpectedPositiveArrayLength,
540                })?;
541
542                if length == 0 {
543                    return Err(ResolveArraySizeError::ExpectedPositiveArrayLength);
544                }
545
546                Ok(IndexableLength::Known(length))
547            }
548            crate::ArraySize::Dynamic => Ok(IndexableLength::Dynamic),
549        }
550    }
551}
552
553/// Return an iterator over the individual components assembled by a
554/// `Compose` expression.
555///
556/// Given `ty` and `components` from an `Expression::Compose`, return an
557/// iterator over the components of the resulting value.
558///
559/// Normally, this would just be an iterator over `components`. However,
560/// `Compose` expressions can concatenate vectors, in which case the i'th
561/// value being composed is not generally the i'th element of `components`.
562/// This function consults `ty` to decide if this concatenation is occurring,
563/// and returns an iterator that produces the components of the result of
564/// the `Compose` expression in either case.
565pub fn flatten_compose<'arenas>(
566    ty: crate::Handle<crate::Type>,
567    components: &'arenas [crate::Handle<crate::Expression>],
568    expressions: &'arenas crate::Arena<crate::Expression>,
569    types: &'arenas crate::UniqueArena<crate::Type>,
570) -> impl Iterator<Item = crate::Handle<crate::Expression>> + 'arenas {
571    // Returning `impl Iterator` is a bit tricky. We may or may not
572    // want to flatten the components, but we have to settle on a
573    // single concrete type to return. This function returns a single
574    // iterator chain that handles both the flattening and
575    // non-flattening cases.
576    let (size, is_vector) = if let crate::TypeInner::Vector { size, .. } = types[ty].inner {
577        (size as usize, true)
578    } else {
579        (components.len(), false)
580    };
581
582    /// Flatten `Compose` expressions if `is_vector` is true.
583    fn flatten_compose<'c>(
584        component: &'c crate::Handle<crate::Expression>,
585        is_vector: bool,
586        expressions: &'c crate::Arena<crate::Expression>,
587    ) -> &'c [crate::Handle<crate::Expression>] {
588        if is_vector {
589            if let crate::Expression::Compose {
590                ty: _,
591                components: ref subcomponents,
592            } = expressions[*component]
593            {
594                return subcomponents;
595            }
596        }
597        core::slice::from_ref(component)
598    }
599
600    /// Flatten `Splat` expressions if `is_vector` is true.
601    fn flatten_splat<'c>(
602        component: &'c crate::Handle<crate::Expression>,
603        is_vector: bool,
604        expressions: &'c crate::Arena<crate::Expression>,
605    ) -> impl Iterator<Item = crate::Handle<crate::Expression>> {
606        let mut expr = *component;
607        let mut count = 1;
608        if is_vector {
609            if let crate::Expression::Splat { size, value } = expressions[expr] {
610                expr = value;
611                count = size as usize;
612            }
613        }
614        core::iter::repeat_n(expr, count)
615    }
616
617    // Expressions like `vec4(vec3(vec2(6, 7), 8), 9)` require us to
618    // flatten up to two levels of `Compose` expressions.
619    //
620    // Expressions like `vec4(vec3(1.0), 1.0)` require us to flatten
621    // `Splat` expressions. Fortunately, the operand of a `Splat` must
622    // be a scalar, so we can stop there.
623    components
624        .iter()
625        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
626        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
627        .flat_map(move |component| flatten_splat(component, is_vector, expressions))
628        .take(size)
629}
630
631#[test]
632fn test_matrix_size() {
633    let module = crate::Module::default();
634    assert_eq!(
635        crate::TypeInner::Matrix {
636            columns: crate::VectorSize::Tri,
637            rows: crate::VectorSize::Tri,
638            scalar: crate::Scalar::F32,
639        }
640        .size(module.to_ctx()),
641        48,
642    );
643}