1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
use super::{context::Context, Error, ErrorKind, Result, Span};
use crate::{
    proc::ResolveContext, Expression, Handle, ImageClass, ImageDimension, Scalar, ScalarKind, Type,
    TypeInner, VectorSize,
};

pub fn parse_type(type_name: &str) -> Option<Type> {
    match type_name {
        "bool" => Some(Type {
            name: None,
            inner: TypeInner::Scalar(Scalar::BOOL),
        }),
        "float" => Some(Type {
            name: None,
            inner: TypeInner::Scalar(Scalar::F32),
        }),
        "double" => Some(Type {
            name: None,
            inner: TypeInner::Scalar(Scalar::F64),
        }),
        "int" => Some(Type {
            name: None,
            inner: TypeInner::Scalar(Scalar::I32),
        }),
        "uint" => Some(Type {
            name: None,
            inner: TypeInner::Scalar(Scalar::U32),
        }),
        "sampler" | "samplerShadow" => Some(Type {
            name: None,
            inner: TypeInner::Sampler {
                comparison: type_name == "samplerShadow",
            },
        }),
        word => {
            fn kind_width_parse(ty: &str) -> Option<Scalar> {
                Some(match ty {
                    "" => Scalar::F32,
                    "b" => Scalar::BOOL,
                    "i" => Scalar::I32,
                    "u" => Scalar::U32,
                    "d" => Scalar::F64,
                    _ => return None,
                })
            }

            fn size_parse(n: &str) -> Option<VectorSize> {
                Some(match n {
                    "2" => VectorSize::Bi,
                    "3" => VectorSize::Tri,
                    "4" => VectorSize::Quad,
                    _ => return None,
                })
            }

            let vec_parse = |word: &str| {
                let mut iter = word.split("vec");

                let kind = iter.next()?;
                let size = iter.next()?;
                let scalar = kind_width_parse(kind)?;
                let size = size_parse(size)?;

                Some(Type {
                    name: None,
                    inner: TypeInner::Vector { size, scalar },
                })
            };

            let mat_parse = |word: &str| {
                let mut iter = word.split("mat");

                let kind = iter.next()?;
                let size = iter.next()?;
                let scalar = kind_width_parse(kind)?;

                let (columns, rows) = if let Some(size) = size_parse(size) {
                    (size, size)
                } else {
                    let mut iter = size.split('x');
                    match (iter.next()?, iter.next()?, iter.next()) {
                        (col, row, None) => (size_parse(col)?, size_parse(row)?),
                        _ => return None,
                    }
                };

                Some(Type {
                    name: None,
                    inner: TypeInner::Matrix {
                        columns,
                        rows,
                        scalar,
                    },
                })
            };

            let texture_parse = |word: &str| {
                let mut iter = word.split("texture");

                let texture_kind = |ty| {
                    Some(match ty {
                        "" => ScalarKind::Float,
                        "i" => ScalarKind::Sint,
                        "u" => ScalarKind::Uint,
                        _ => return None,
                    })
                };

                let kind = iter.next()?;
                let size = iter.next()?;
                let kind = texture_kind(kind)?;

                let sampled = |multi| ImageClass::Sampled { kind, multi };

                let (dim, arrayed, class) = match size {
                    "1D" => (ImageDimension::D1, false, sampled(false)),
                    "1DArray" => (ImageDimension::D1, true, sampled(false)),
                    "2D" => (ImageDimension::D2, false, sampled(false)),
                    "2DArray" => (ImageDimension::D2, true, sampled(false)),
                    "2DMS" => (ImageDimension::D2, false, sampled(true)),
                    "2DMSArray" => (ImageDimension::D2, true, sampled(true)),
                    "3D" => (ImageDimension::D3, false, sampled(false)),
                    "Cube" => (ImageDimension::Cube, false, sampled(false)),
                    "CubeArray" => (ImageDimension::Cube, true, sampled(false)),
                    _ => return None,
                };

                Some(Type {
                    name: None,
                    inner: TypeInner::Image {
                        dim,
                        arrayed,
                        class,
                    },
                })
            };

            let image_parse = |word: &str| {
                let mut iter = word.split("image");

                let texture_kind = |ty| {
                    Some(match ty {
                        "" => ScalarKind::Float,
                        "i" => ScalarKind::Sint,
                        "u" => ScalarKind::Uint,
                        _ => return None,
                    })
                };

                let kind = iter.next()?;
                let size = iter.next()?;
                // TODO: Check that the texture format and the kind match
                let _ = texture_kind(kind)?;

                let class = ImageClass::Storage {
                    format: crate::StorageFormat::R8Uint,
                    access: crate::StorageAccess::all(),
                };

                // TODO: glsl support multisampled storage images, naga doesn't
                let (dim, arrayed) = match size {
                    "1D" => (ImageDimension::D1, false),
                    "1DArray" => (ImageDimension::D1, true),
                    "2D" => (ImageDimension::D2, false),
                    "2DArray" => (ImageDimension::D2, true),
                    "3D" => (ImageDimension::D3, false),
                    // Naga doesn't support cube images and it's usefulness
                    // is questionable, so they won't be supported for now
                    // "Cube" => (ImageDimension::Cube, false),
                    // "CubeArray" => (ImageDimension::Cube, true),
                    _ => return None,
                };

                Some(Type {
                    name: None,
                    inner: TypeInner::Image {
                        dim,
                        arrayed,
                        class,
                    },
                })
            };

            vec_parse(word)
                .or_else(|| mat_parse(word))
                .or_else(|| texture_parse(word))
                .or_else(|| image_parse(word))
        }
    }
}

pub const fn scalar_components(ty: &TypeInner) -> Option<Scalar> {
    match *ty {
        TypeInner::Scalar(scalar)
        | TypeInner::Vector { scalar, .. }
        | TypeInner::ValuePointer { scalar, .. }
        | TypeInner::Matrix { scalar, .. } => Some(scalar),
        _ => None,
    }
}

pub const fn type_power(scalar: Scalar) -> Option<u32> {
    Some(match scalar.kind {
        ScalarKind::Sint => 0,
        ScalarKind::Uint => 1,
        ScalarKind::Float if scalar.width == 4 => 2,
        ScalarKind::Float => 3,
        ScalarKind::Bool | ScalarKind::AbstractInt | ScalarKind::AbstractFloat => return None,
    })
}

impl Context<'_> {
    /// Resolves the types of the expressions until `expr` (inclusive)
    ///
    /// This needs to be done before the [`typifier`] can be queried for
    /// the types of the expressions in the range between the last grow and `expr`.
    ///
    /// # Note
    ///
    /// The `resolve_type*` methods (like [`resolve_type`]) automatically
    /// grow the [`typifier`] so calling this method is not necessary when using
    /// them.
    ///
    /// [`typifier`]: Context::typifier
    /// [`resolve_type`]: Self::resolve_type
    pub(crate) fn typifier_grow(&mut self, expr: Handle<Expression>, meta: Span) -> Result<()> {
        let resolve_ctx = ResolveContext::with_locals(self.module, &self.locals, &self.arguments);

        let typifier = if self.is_const {
            &mut self.const_typifier
        } else {
            &mut self.typifier
        };

        let expressions = if self.is_const {
            &self.module.global_expressions
        } else {
            &self.expressions
        };

        typifier
            .grow(expr, expressions, &resolve_ctx)
            .map_err(|error| Error {
                kind: ErrorKind::SemanticError(format!("Can't resolve type: {error:?}").into()),
                meta,
            })
    }

    pub(crate) fn get_type(&self, expr: Handle<Expression>) -> &TypeInner {
        let typifier = if self.is_const {
            &self.const_typifier
        } else {
            &self.typifier
        };

        typifier.get(expr, &self.module.types)
    }

    /// Gets the type for the result of the `expr` expression
    ///
    /// Automatically grows the [`typifier`] to `expr` so calling
    /// [`typifier_grow`] is not necessary
    ///
    /// [`typifier`]: Context::typifier
    /// [`typifier_grow`]: Self::typifier_grow
    pub(crate) fn resolve_type(
        &mut self,
        expr: Handle<Expression>,
        meta: Span,
    ) -> Result<&TypeInner> {
        self.typifier_grow(expr, meta)?;
        Ok(self.get_type(expr))
    }

    /// Gets the type handle for the result of the `expr` expression
    ///
    /// Automatically grows the [`typifier`] to `expr` so calling
    /// [`typifier_grow`] is not necessary
    ///
    /// # Note
    ///
    /// Consider using [`resolve_type`] whenever possible
    /// since it doesn't require adding each type to the [`types`] arena
    /// and it doesn't need to mutably borrow the [`Parser`][Self]
    ///
    /// [`types`]: crate::Module::types
    /// [`typifier`]: Context::typifier
    /// [`typifier_grow`]: Self::typifier_grow
    /// [`resolve_type`]: Self::resolve_type
    pub(crate) fn resolve_type_handle(
        &mut self,
        expr: Handle<Expression>,
        meta: Span,
    ) -> Result<Handle<Type>> {
        self.typifier_grow(expr, meta)?;

        let typifier = if self.is_const {
            &mut self.const_typifier
        } else {
            &mut self.typifier
        };

        Ok(typifier.register_type(expr, &mut self.module.types))
    }

    /// Invalidates the cached type resolution for `expr` forcing a recomputation
    pub(crate) fn invalidate_expression(
        &mut self,
        expr: Handle<Expression>,
        meta: Span,
    ) -> Result<()> {
        let resolve_ctx = ResolveContext::with_locals(self.module, &self.locals, &self.arguments);

        let typifier = if self.is_const {
            &mut self.const_typifier
        } else {
            &mut self.typifier
        };

        typifier
            .invalidate(expr, &self.expressions, &resolve_ctx)
            .map_err(|error| Error {
                kind: ErrorKind::SemanticError(format!("Can't resolve type: {error:?}").into()),
                meta,
            })
    }

    pub(crate) fn lift_up_const_expression(
        &mut self,
        expr: Handle<Expression>,
    ) -> Result<Handle<Expression>> {
        let meta = self.expressions.get_span(expr);
        let h = match self.expressions[expr] {
            ref expr @ (Expression::Literal(_)
            | Expression::Constant(_)
            | Expression::ZeroValue(_)) => {
                self.module.global_expressions.append(expr.clone(), meta)
            }
            Expression::Compose { ty, ref components } => {
                let mut components = components.clone();
                for component in &mut components {
                    *component = self.lift_up_const_expression(*component)?;
                }
                self.module
                    .global_expressions
                    .append(Expression::Compose { ty, components }, meta)
            }
            Expression::Splat { size, value } => {
                let value = self.lift_up_const_expression(value)?;
                self.module
                    .global_expressions
                    .append(Expression::Splat { size, value }, meta)
            }
            _ => {
                return Err(Error {
                    kind: ErrorKind::SemanticError("Expression is not const-expression".into()),
                    meta,
                })
            }
        };
        self.global_expression_kind_tracker
            .insert(h, crate::proc::ExpressionKind::Const);
        Ok(h)
    }
}