wgpu/api/
buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
use std::{
    error, fmt,
    ops::{Bound, Deref, DerefMut, Range, RangeBounds},
    sync::Arc,
};

use parking_lot::Mutex;

use crate::*;

/// Handle to a GPU-accessible buffer.
///
/// Created with [`Device::create_buffer`] or
/// [`DeviceExt::create_buffer_init`](util::DeviceExt::create_buffer_init).
///
/// Corresponds to [WebGPU `GPUBuffer`](https://gpuweb.github.io/gpuweb/#buffer-interface).
///
/// A `Buffer`'s bytes have "interior mutability": functions like
/// [`Queue::write_buffer`] or [mapping] a buffer for writing only require a
/// `&Buffer`, not a `&mut Buffer`, even though they modify its contents. `wgpu`
/// prevents simultaneous reads and writes of buffer contents using run-time
/// checks.
///
/// [mapping]: Buffer#mapping-buffers
///
/// # Mapping buffers
///
/// If a `Buffer` is created with the appropriate [`usage`], it can be *mapped*:
/// you can make its contents accessible to the CPU as an ordinary `&[u8]` or
/// `&mut [u8]` slice of bytes. Buffers created with the
/// [`mapped_at_creation`][mac] flag set are also mapped initially.
///
/// Depending on the hardware, the buffer could be memory shared between CPU and
/// GPU, so that the CPU has direct access to the same bytes the GPU will
/// consult; or it may be ordinary CPU memory, whose contents the system must
/// copy to/from the GPU as needed. This crate's API is designed to work the
/// same way in either case: at any given time, a buffer is either mapped and
/// available to the CPU, or unmapped and ready for use by the GPU, but never
/// both. This makes it impossible for either side to observe changes by the
/// other immediately, and any necessary transfers can be carried out when the
/// buffer transitions from one state to the other.
///
/// There are two ways to map a buffer:
///
/// - If [`BufferDescriptor::mapped_at_creation`] is `true`, then the entire
///   buffer is mapped when it is created. This is the easiest way to initialize
///   a new buffer. You can set `mapped_at_creation` on any kind of buffer,
///   regardless of its [`usage`] flags.
///
/// - If the buffer's [`usage`] includes the [`MAP_READ`] or [`MAP_WRITE`]
///   flags, then you can call `buffer.slice(range).map_async(mode, callback)`
///   to map the portion of `buffer` given by `range`. This waits for the GPU to
///   finish using the buffer, and invokes `callback` as soon as the buffer is
///   safe for the CPU to access.
///
/// Once a buffer is mapped:
///
/// - You can call `buffer.slice(range).get_mapped_range()` to obtain a
///   [`BufferView`], which dereferences to a `&[u8]` that you can use to read
///   the buffer's contents.
///
/// - Or, you can call `buffer.slice(range).get_mapped_range_mut()` to obtain a
///   [`BufferViewMut`], which dereferences to a `&mut [u8]` that you can use to
///   read and write the buffer's contents.
///
/// The given `range` must fall within the mapped portion of the buffer. If you
/// attempt to access overlapping ranges, even for shared access only, these
/// methods panic.
///
/// While a buffer is mapped, you may not submit any commands to the GPU that
/// access it. You may record command buffers that use the buffer, but if you
/// submit them while the buffer is mapped, submission will panic.
///
/// When you are done using the buffer on the CPU, you must call
/// [`Buffer::unmap`] to make it available for use by the GPU again. All
/// [`BufferView`] and [`BufferViewMut`] views referring to the buffer must be
/// dropped before you unmap it; otherwise, [`Buffer::unmap`] will panic.
///
/// # Example
///
/// If `buffer` was created with [`BufferUsages::MAP_WRITE`], we could fill it
/// with `f32` values like this:
///
/// ```no_run
/// # mod bytemuck {
/// #     pub fn cast_slice_mut(bytes: &mut [u8]) -> &mut [f32] { todo!() }
/// # }
/// # let device: wgpu::Device = todo!();
/// # let buffer: wgpu::Buffer = todo!();
/// let buffer = std::sync::Arc::new(buffer);
/// let capturable = buffer.clone();
/// buffer.slice(..).map_async(wgpu::MapMode::Write, move |result| {
///     if result.is_ok() {
///         let mut view = capturable.slice(..).get_mapped_range_mut();
///         let floats: &mut [f32] = bytemuck::cast_slice_mut(&mut view);
///         floats.fill(42.0);
///         drop(view);
///         capturable.unmap();
///     }
/// });
/// ```
///
/// This code takes the following steps:
///
/// - First, it moves `buffer` into an [`Arc`], and makes a clone for capture by
///   the callback passed to [`map_async`]. Since a [`map_async`] callback may be
///   invoked from another thread, interaction between the callback and the
///   thread calling [`map_async`] generally requires some sort of shared heap
///   data like this. In real code, the [`Arc`] would probably own some larger
///   structure that itself owns `buffer`.
///
/// - Then, it calls [`Buffer::slice`] to make a [`BufferSlice`] referring to
///   the buffer's entire contents.
///
/// - Next, it calls [`BufferSlice::map_async`] to request that the bytes to
///   which the slice refers be made accessible to the CPU ("mapped"). This may
///   entail waiting for previously enqueued operations on `buffer` to finish.
///   Although [`map_async`] itself always returns immediately, it saves the
///   callback function to be invoked later.
///
/// - When some later call to [`Device::poll`] or [`Instance::poll_all`] (not
///   shown in this example) determines that the buffer is mapped and ready for
///   the CPU to use, it invokes the callback function.
///
/// - The callback function calls [`Buffer::slice`] and then
///   [`BufferSlice::get_mapped_range_mut`] to obtain a [`BufferViewMut`], which
///   dereferences to a `&mut [u8]` slice referring to the buffer's bytes.
///
/// - It then uses the [`bytemuck`] crate to turn the `&mut [u8]` into a `&mut
///   [f32]`, and calls the slice [`fill`] method to fill the buffer with a
///   useful value.
///
/// - Finally, the callback drops the view and calls [`Buffer::unmap`] to unmap
///   the buffer. In real code, the callback would also need to do some sort of
///   synchronization to let the rest of the program know that it has completed
///   its work.
///
/// If using [`map_async`] directly is awkward, you may find it more convenient to
/// use [`Queue::write_buffer`] and [`util::DownloadBuffer::read_buffer`].
/// However, those each have their own tradeoffs; the asynchronous nature of GPU
/// execution makes it hard to avoid friction altogether.
///
/// [`Arc`]: std::sync::Arc
/// [`map_async`]: BufferSlice::map_async
/// [`bytemuck`]: https://crates.io/crates/bytemuck
/// [`fill`]: slice::fill
///
/// ## Mapping buffers on the web
///
/// When compiled to WebAssembly and running in a browser content process,
/// `wgpu` implements its API in terms of the browser's WebGPU implementation.
/// In this context, `wgpu` is further isolated from the GPU:
///
/// - Depending on the browser's WebGPU implementation, mapping and unmapping
///   buffers probably entails copies between WebAssembly linear memory and the
///   graphics driver's buffers.
///
/// - All modern web browsers isolate web content in its own sandboxed process,
///   which can only interact with the GPU via interprocess communication (IPC).
///   Although most browsers' IPC systems use shared memory for large data
///   transfers, there will still probably need to be copies into and out of the
///   shared memory buffers.
///
/// All of these copies contribute to the cost of buffer mapping in this
/// configuration.
///
/// [`usage`]: BufferDescriptor::usage
/// [mac]: BufferDescriptor::mapped_at_creation
/// [`MAP_READ`]: BufferUsages::MAP_READ
/// [`MAP_WRITE`]: BufferUsages::MAP_WRITE
#[derive(Debug, Clone)]
pub struct Buffer {
    pub(crate) inner: dispatch::DispatchBuffer,
    pub(crate) map_context: Arc<Mutex<MapContext>>,
    pub(crate) size: wgt::BufferAddress,
    pub(crate) usage: BufferUsages,
    // Todo: missing map_state https://www.w3.org/TR/webgpu/#dom-gpubuffer-mapstate
}
#[cfg(send_sync)]
static_assertions::assert_impl_all!(Buffer: Send, Sync);

crate::cmp::impl_eq_ord_hash_proxy!(Buffer => .inner);

impl Buffer {
    /// Return the binding view of the entire buffer.
    pub fn as_entire_binding(&self) -> BindingResource<'_> {
        BindingResource::Buffer(self.as_entire_buffer_binding())
    }

    /// Return the binding view of the entire buffer.
    pub fn as_entire_buffer_binding(&self) -> BufferBinding<'_> {
        BufferBinding {
            buffer: self,
            offset: 0,
            size: None,
        }
    }

    /// Returns the inner hal Buffer using a callback. The hal buffer will be `None` if the
    /// backend type argument does not match with this wgpu Buffer
    ///
    /// # Safety
    ///
    /// - The raw handle obtained from the hal Buffer must not be manually destroyed
    #[cfg(wgpu_core)]
    pub unsafe fn as_hal<A: wgc::hal_api::HalApi, F: FnOnce(Option<&A::Buffer>) -> R, R>(
        &self,
        hal_buffer_callback: F,
    ) -> R {
        if let Some(buffer) = self.inner.as_core_opt() {
            unsafe {
                buffer
                    .context
                    .buffer_as_hal::<A, F, R>(buffer, hal_buffer_callback)
            }
        } else {
            hal_buffer_callback(None)
        }
    }

    /// Return a slice of a [`Buffer`]'s bytes.
    ///
    /// Return a [`BufferSlice`] referring to the portion of `self`'s contents
    /// indicated by `bounds`. Regardless of what sort of data `self` stores,
    /// `bounds` start and end are given in bytes.
    ///
    /// A [`BufferSlice`] can be used to supply vertex and index data, or to map
    /// buffer contents for access from the CPU. See the [`BufferSlice`]
    /// documentation for details.
    ///
    /// The `range` argument can be half or fully unbounded: for example,
    /// `buffer.slice(..)` refers to the entire buffer, and `buffer.slice(n..)`
    /// refers to the portion starting at the `n`th byte and extending to the
    /// end of the buffer.
    pub fn slice<S: RangeBounds<BufferAddress>>(&self, bounds: S) -> BufferSlice<'_> {
        let (offset, size) = range_to_offset_size(bounds);
        check_buffer_bounds(self.size, offset, size);
        BufferSlice {
            buffer: self,
            offset,
            size,
        }
    }

    /// Flushes any pending write operations and unmaps the buffer from host memory.
    pub fn unmap(&self) {
        self.map_context.lock().reset();
        self.inner.unmap();
    }

    /// Destroy the associated native resources as soon as possible.
    pub fn destroy(&self) {
        self.inner.destroy();
    }

    /// Returns the length of the buffer allocation in bytes.
    ///
    /// This is always equal to the `size` that was specified when creating the buffer.
    pub fn size(&self) -> BufferAddress {
        self.size
    }

    /// Returns the allowed usages for this `Buffer`.
    ///
    /// This is always equal to the `usage` that was specified when creating the buffer.
    pub fn usage(&self) -> BufferUsages {
        self.usage
    }
}

/// A slice of a [`Buffer`], to be mapped, used for vertex or index data, or the like.
///
/// You can create a `BufferSlice` by calling [`Buffer::slice`]:
///
/// ```no_run
/// # let buffer: wgpu::Buffer = todo!();
/// let slice = buffer.slice(10..20);
/// ```
///
/// This returns a slice referring to the second ten bytes of `buffer`. To get a
/// slice of the entire `Buffer`:
///
/// ```no_run
/// # let buffer: wgpu::Buffer = todo!();
/// let whole_buffer_slice = buffer.slice(..);
/// ```
///
/// You can pass buffer slices to methods like [`RenderPass::set_vertex_buffer`]
/// and [`RenderPass::set_index_buffer`] to indicate which portion of the buffer
/// a draw call should consult.
///
/// To access the slice's contents on the CPU, you must first [map] the buffer,
/// and then call [`BufferSlice::get_mapped_range`] or
/// [`BufferSlice::get_mapped_range_mut`] to obtain a view of the slice's
/// contents. See the documentation on [mapping][map] for more details,
/// including example code.
///
/// Unlike a Rust shared slice `&[T]`, whose existence guarantees that
/// nobody else is modifying the `T` values to which it refers, a
/// [`BufferSlice`] doesn't guarantee that the buffer's contents aren't
/// changing. You can still record and submit commands operating on the
/// buffer while holding a [`BufferSlice`]. A [`BufferSlice`] simply
/// represents a certain range of the buffer's bytes.
///
/// The `BufferSlice` type is unique to the Rust API of `wgpu`. In the WebGPU
/// specification, an offset and size are specified as arguments to each call
/// working with the [`Buffer`], instead.
///
/// [map]: Buffer#mapping-buffers
#[derive(Copy, Clone, Debug)]
pub struct BufferSlice<'a> {
    pub(crate) buffer: &'a Buffer,
    pub(crate) offset: BufferAddress,
    pub(crate) size: Option<BufferSize>,
}
#[cfg(send_sync)]
static_assertions::assert_impl_all!(BufferSlice<'_>: Send, Sync);

impl<'a> BufferSlice<'a> {
    /// Map the buffer. Buffer is ready to map once the callback is called.
    ///
    /// For the callback to complete, either `queue.submit(..)`, `instance.poll_all(..)`, or `device.poll(..)`
    /// must be called elsewhere in the runtime, possibly integrated into an event loop or run on a separate thread.
    ///
    /// The callback will be called on the thread that first calls the above functions after the gpu work
    /// has completed. There are no restrictions on the code you can run in the callback, however on native the
    /// call to the function will not complete until the callback returns, so prefer keeping callbacks short
    /// and used to set flags, send messages, etc.
    pub fn map_async(
        &self,
        mode: MapMode,
        callback: impl FnOnce(Result<(), BufferAsyncError>) + WasmNotSend + 'static,
    ) {
        let mut mc = self.buffer.map_context.lock();
        assert_eq!(mc.initial_range, 0..0, "Buffer is already mapped");
        let end = match self.size {
            Some(s) => self.offset + s.get(),
            None => mc.total_size,
        };
        mc.initial_range = self.offset..end;

        self.buffer
            .inner
            .map_async(mode, self.offset..end, Box::new(callback));
    }

    /// Gain read-only access to the bytes of a [mapped] [`Buffer`].
    ///
    /// Return a [`BufferView`] referring to the buffer range represented by
    /// `self`. See the documentation for [`BufferView`] for details.
    ///
    /// # Panics
    ///
    /// - This panics if the buffer to which `self` refers is not currently
    ///   [mapped].
    ///
    /// - If you try to create overlapping views of a buffer, mutable or
    ///   otherwise, `get_mapped_range` will panic.
    ///
    /// [mapped]: Buffer#mapping-buffers
    pub fn get_mapped_range(&self) -> BufferView<'a> {
        let end = self.buffer.map_context.lock().add(self.offset, self.size);
        let range = self.buffer.inner.get_mapped_range(self.offset..end);
        BufferView {
            slice: *self,
            inner: range,
        }
    }

    /// Synchronously and immediately map a buffer for reading. If the buffer is not immediately mappable
    /// through [`BufferDescriptor::mapped_at_creation`] or [`BufferSlice::map_async`], will fail.
    ///
    /// This is useful when targeting WebGPU and you want to pass mapped data directly to js.
    /// Unlike `get_mapped_range` which unconditionally copies mapped data into the wasm heap,
    /// this function directly hands you the ArrayBuffer that we mapped the data into in js.
    ///
    /// This is only available on WebGPU, on any other backends this will return `None`.
    #[cfg(webgpu)]
    pub fn get_mapped_range_as_array_buffer(&self) -> Option<js_sys::ArrayBuffer> {
        let end = self.buffer.map_context.lock().add(self.offset, self.size);

        self.buffer
            .inner
            .get_mapped_range_as_array_buffer(self.offset..end)
    }

    /// Gain write access to the bytes of a [mapped] [`Buffer`].
    ///
    /// Return a [`BufferViewMut`] referring to the buffer range represented by
    /// `self`. See the documentation for [`BufferViewMut`] for more details.
    ///
    /// # Panics
    ///
    /// - This panics if the buffer to which `self` refers is not currently
    ///   [mapped].
    ///
    /// - If you try to create overlapping views of a buffer, mutable or
    ///   otherwise, `get_mapped_range_mut` will panic.
    ///
    /// [mapped]: Buffer#mapping-buffers
    pub fn get_mapped_range_mut(&self) -> BufferViewMut<'a> {
        let end = self.buffer.map_context.lock().add(self.offset, self.size);
        let range = self.buffer.inner.get_mapped_range(self.offset..end);
        BufferViewMut {
            slice: *self,
            inner: range,
            readable: self.buffer.usage.contains(BufferUsages::MAP_READ),
        }
    }
}

/// The mapped portion of a buffer, if any, and its outstanding views.
///
/// This ensures that views fall within the mapped range and don't overlap, and
/// also takes care of turning `Option<BufferSize>` sizes into actual buffer
/// offsets.
#[derive(Debug)]
pub(crate) struct MapContext {
    /// The overall size of the buffer.
    ///
    /// This is just a convenient copy of [`Buffer::size`].
    pub(crate) total_size: BufferAddress,

    /// The range of the buffer that is mapped.
    ///
    /// This is `0..0` if the buffer is not mapped. This becomes non-empty when
    /// the buffer is mapped at creation time, and when you call `map_async` on
    /// some [`BufferSlice`] (so technically, it indicates the portion that is
    /// *or has been requested to be* mapped.)
    ///
    /// All [`BufferView`]s and [`BufferViewMut`]s must fall within this range.
    pub(crate) initial_range: Range<BufferAddress>,

    /// The ranges covered by all outstanding [`BufferView`]s and
    /// [`BufferViewMut`]s. These are non-overlapping, and are all contained
    /// within `initial_range`.
    sub_ranges: Vec<Range<BufferAddress>>,
}

impl MapContext {
    pub(crate) fn new(total_size: BufferAddress) -> Self {
        Self {
            total_size,
            initial_range: 0..0,
            sub_ranges: Vec::new(),
        }
    }

    /// Record that the buffer is no longer mapped.
    fn reset(&mut self) {
        self.initial_range = 0..0;

        assert!(
            self.sub_ranges.is_empty(),
            "You cannot unmap a buffer that still has accessible mapped views"
        );
    }

    /// Record that the `size` bytes of the buffer at `offset` are now viewed.
    ///
    /// Return the byte offset within the buffer of the end of the viewed range.
    ///
    /// # Panics
    ///
    /// This panics if the given range overlaps with any existing range.
    fn add(&mut self, offset: BufferAddress, size: Option<BufferSize>) -> BufferAddress {
        let end = match size {
            Some(s) => offset + s.get(),
            None => self.initial_range.end,
        };
        assert!(self.initial_range.start <= offset && end <= self.initial_range.end);
        // This check is essential for avoiding undefined behavior: it is the
        // only thing that ensures that `&mut` references to the buffer's
        // contents don't alias anything else.
        for sub in self.sub_ranges.iter() {
            assert!(
                end <= sub.start || offset >= sub.end,
                "Intersecting map range with {sub:?}"
            );
        }
        self.sub_ranges.push(offset..end);
        end
    }

    /// Record that the `size` bytes of the buffer at `offset` are no longer viewed.
    ///
    /// # Panics
    ///
    /// This panics if the given range does not exactly match one previously
    /// passed to [`add`].
    ///
    /// [`add]`: MapContext::add
    fn remove(&mut self, offset: BufferAddress, size: Option<BufferSize>) {
        let end = match size {
            Some(s) => offset + s.get(),
            None => self.initial_range.end,
        };

        let index = self
            .sub_ranges
            .iter()
            .position(|r| *r == (offset..end))
            .expect("unable to remove range from map context");
        self.sub_ranges.swap_remove(index);
    }
}

/// Describes a [`Buffer`].
///
/// For use with [`Device::create_buffer`].
///
/// Corresponds to [WebGPU `GPUBufferDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpubufferdescriptor).
pub type BufferDescriptor<'a> = wgt::BufferDescriptor<Label<'a>>;
static_assertions::assert_impl_all!(BufferDescriptor<'_>: Send, Sync);

/// Error occurred when trying to async map a buffer.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BufferAsyncError;
static_assertions::assert_impl_all!(BufferAsyncError: Send, Sync);

impl fmt::Display for BufferAsyncError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Error occurred when trying to async map a buffer")
    }
}

impl error::Error for BufferAsyncError {}

/// Type of buffer mapping.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum MapMode {
    /// Map only for reading
    Read,
    /// Map only for writing
    Write,
}
static_assertions::assert_impl_all!(MapMode: Send, Sync);

/// A read-only view of a mapped buffer's bytes.
///
/// To get a `BufferView`, first [map] the buffer, and then
/// call `buffer.slice(range).get_mapped_range()`.
///
/// `BufferView` dereferences to `&[u8]`, so you can use all the usual Rust
/// slice methods to access the buffer's contents. It also implements
/// `AsRef<[u8]>`, if that's more convenient.
///
/// Before the buffer can be unmapped, all `BufferView`s observing it
/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
///
/// For example code, see the documentation on [mapping buffers][map].
///
/// [map]: Buffer#mapping-buffers
/// [`map_async`]: BufferSlice::map_async
#[derive(Debug)]
pub struct BufferView<'a> {
    slice: BufferSlice<'a>,
    inner: dispatch::DispatchBufferMappedRange,
}

impl std::ops::Deref for BufferView<'_> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.inner.slice()
    }
}

impl AsRef<[u8]> for BufferView<'_> {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.inner.slice()
    }
}

/// A write-only view of a mapped buffer's bytes.
///
/// To get a `BufferViewMut`, first [map] the buffer, and then
/// call `buffer.slice(range).get_mapped_range_mut()`.
///
/// `BufferViewMut` dereferences to `&mut [u8]`, so you can use all the usual
/// Rust slice methods to access the buffer's contents. It also implements
/// `AsMut<[u8]>`, if that's more convenient.
///
/// It is possible to read the buffer using this view, but doing so is not
/// recommended, as it is likely to be slow.
///
/// Before the buffer can be unmapped, all `BufferViewMut`s observing it
/// must be dropped. Otherwise, the call to [`Buffer::unmap`] will panic.
///
/// For example code, see the documentation on [mapping buffers][map].
///
/// [map]: Buffer#mapping-buffers
#[derive(Debug)]
pub struct BufferViewMut<'a> {
    slice: BufferSlice<'a>,
    inner: dispatch::DispatchBufferMappedRange,
    readable: bool,
}

impl AsMut<[u8]> for BufferViewMut<'_> {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        self.inner.slice_mut()
    }
}

impl Deref for BufferViewMut<'_> {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        if !self.readable {
            log::warn!("Reading from a BufferViewMut is slow and not recommended.");
        }

        self.inner.slice()
    }
}

impl DerefMut for BufferViewMut<'_> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.inner.slice_mut()
    }
}

impl Drop for BufferView<'_> {
    fn drop(&mut self) {
        self.slice
            .buffer
            .map_context
            .lock()
            .remove(self.slice.offset, self.slice.size);
    }
}

impl Drop for BufferViewMut<'_> {
    fn drop(&mut self) {
        self.slice
            .buffer
            .map_context
            .lock()
            .remove(self.slice.offset, self.slice.size);
    }
}

fn check_buffer_bounds(
    buffer_size: BufferAddress,
    offset: BufferAddress,
    size: Option<BufferSize>,
) {
    // A slice of length 0 is invalid, so the offset must not be equal to or greater than the buffer size.
    if offset >= buffer_size {
        panic!(
            "slice offset {} is out of range for buffer of size {}",
            offset, buffer_size
        );
    }

    if let Some(size) = size {
        // Detect integer overflow.
        let end = offset.checked_add(size.get());
        if end.map_or(true, |end| end > buffer_size) {
            panic!(
                "slice offset {} size {} is out of range for buffer of size {}",
                offset, size, buffer_size
            );
        }
    }
}

fn range_to_offset_size<S: RangeBounds<BufferAddress>>(
    bounds: S,
) -> (BufferAddress, Option<BufferSize>) {
    let offset = match bounds.start_bound() {
        Bound::Included(&bound) => bound,
        Bound::Excluded(&bound) => bound + 1,
        Bound::Unbounded => 0,
    };
    let size = match bounds.end_bound() {
        Bound::Included(&bound) => Some(bound + 1 - offset),
        Bound::Excluded(&bound) => Some(bound - offset),
        Bound::Unbounded => None,
    }
    .map(|size| BufferSize::new(size).expect("Buffer slices can not be empty"));

    (offset, size)
}

#[cfg(test)]
mod tests {
    use super::{check_buffer_bounds, range_to_offset_size, BufferSize};

    #[test]
    fn range_to_offset_size_works() {
        assert_eq!(range_to_offset_size(0..2), (0, BufferSize::new(2)));
        assert_eq!(range_to_offset_size(2..5), (2, BufferSize::new(3)));
        assert_eq!(range_to_offset_size(..), (0, None));
        assert_eq!(range_to_offset_size(21..), (21, None));
        assert_eq!(range_to_offset_size(0..), (0, None));
        assert_eq!(range_to_offset_size(..21), (0, BufferSize::new(21)));
    }

    #[test]
    #[should_panic]
    fn range_to_offset_size_panics_for_empty_range() {
        range_to_offset_size(123..123);
    }

    #[test]
    #[should_panic]
    fn range_to_offset_size_panics_for_unbounded_empty_range() {
        range_to_offset_size(..0);
    }

    #[test]
    #[should_panic]
    fn check_buffer_bounds_panics_for_offset_at_size() {
        check_buffer_bounds(100, 100, None);
    }

    #[test]
    fn check_buffer_bounds_works_for_end_in_range() {
        check_buffer_bounds(200, 100, BufferSize::new(50));
        check_buffer_bounds(200, 100, BufferSize::new(100));
        check_buffer_bounds(u64::MAX, u64::MAX - 100, BufferSize::new(100));
        check_buffer_bounds(u64::MAX, 0, BufferSize::new(u64::MAX));
        check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX - 1));
    }

    #[test]
    #[should_panic]
    fn check_buffer_bounds_panics_for_end_over_size() {
        check_buffer_bounds(200, 100, BufferSize::new(101));
    }

    #[test]
    #[should_panic]
    fn check_buffer_bounds_panics_for_end_wraparound() {
        check_buffer_bounds(u64::MAX, 1, BufferSize::new(u64::MAX));
    }
}