naga/back/glsl/mod.rs
1/*!
2Backend for [GLSL][glsl] (OpenGL Shading Language).
3
4The main structure is [`Writer`], it maintains internal state that is used
5to output a [`Module`](crate::Module) into glsl
6
7# Supported versions
8### Core
9- 330
10- 400
11- 410
12- 420
13- 430
14- 450
15
16### ES
17- 300
18- 310
19
20[glsl]: https://www.khronos.org/registry/OpenGL/index_gl.php
21*/
22
23// GLSL is mostly a superset of C but it also removes some parts of it this is a list of relevant
24// aspects for this backend.
25//
26// The most notable change is the introduction of the version preprocessor directive that must
27// always be the first line of a glsl file and is written as
28// `#version number profile`
29// `number` is the version itself (i.e. 300) and `profile` is the
30// shader profile we only support "core" and "es", the former is used in desktop applications and
31// the later is used in embedded contexts, mobile devices and browsers. Each one as it's own
32// versions (at the time of writing this the latest version for "core" is 460 and for "es" is 320)
33//
34// Other important preprocessor addition is the extension directive which is written as
35// `#extension name: behaviour`
36// Extensions provide increased features in a plugin fashion but they aren't required to be
37// supported hence why they are called extensions, that's why `behaviour` is used it specifies
38// whether the extension is strictly required or if it should only be enabled if needed. In our case
39// when we use extensions we set behaviour to `require` always.
40//
41// The only thing that glsl removes that makes a difference are pointers.
42//
43// Additions that are relevant for the backend are the discard keyword, the introduction of
44// vector, matrices, samplers, image types and functions that provide common shader operations
45
46pub use features::Features;
47
48use alloc::{
49 borrow::ToOwned,
50 format,
51 string::{String, ToString},
52 vec,
53 vec::Vec,
54};
55use core::{
56 cmp::Ordering,
57 fmt::{self, Error as FmtError, Write},
58 mem,
59};
60
61use hashbrown::hash_map;
62use thiserror::Error;
63
64use crate::{
65 back::{self, Baked},
66 common,
67 proc::{self, NameKey},
68 valid, Handle, ShaderStage, TypeInner,
69};
70use features::FeaturesManager;
71
72/// Contains the features related code and the features querying method
73mod features;
74/// Contains a constant with a slice of all the reserved keywords RESERVED_KEYWORDS
75mod keywords;
76
77/// List of supported `core` GLSL versions.
78pub const SUPPORTED_CORE_VERSIONS: &[u16] = &[140, 150, 330, 400, 410, 420, 430, 440, 450, 460];
79/// List of supported `es` GLSL versions.
80pub const SUPPORTED_ES_VERSIONS: &[u16] = &[300, 310, 320];
81
82/// The suffix of the variable that will hold the calculated clamped level
83/// of detail for bounds checking in `ImageLoad`
84const CLAMPED_LOD_SUFFIX: &str = "_clamped_lod";
85
86pub(crate) const MODF_FUNCTION: &str = "naga_modf";
87pub(crate) const FREXP_FUNCTION: &str = "naga_frexp";
88
89// Must match code in glsl_built_in
90pub const FIRST_INSTANCE_BINDING: &str = "naga_vs_first_instance";
91
92#[cfg(any(feature = "serialize", feature = "deserialize"))]
93#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
94#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
95struct BindingMapSerialization {
96 resource_binding: crate::ResourceBinding,
97 bind_target: u8,
98}
99
100#[cfg(feature = "deserialize")]
101fn deserialize_binding_map<'de, D>(deserializer: D) -> Result<BindingMap, D::Error>
102where
103 D: serde::Deserializer<'de>,
104{
105 use serde::Deserialize;
106
107 let vec = Vec::<BindingMapSerialization>::deserialize(deserializer)?;
108 let mut map = BindingMap::default();
109 for item in vec {
110 map.insert(item.resource_binding, item.bind_target);
111 }
112 Ok(map)
113}
114
115/// Mapping between resources and bindings.
116pub type BindingMap = alloc::collections::BTreeMap<crate::ResourceBinding, u8>;
117
118impl crate::AtomicFunction {
119 const fn to_glsl(self) -> &'static str {
120 match self {
121 Self::Add | Self::Subtract => "Add",
122 Self::And => "And",
123 Self::InclusiveOr => "Or",
124 Self::ExclusiveOr => "Xor",
125 Self::Min => "Min",
126 Self::Max => "Max",
127 Self::Exchange { compare: None } => "Exchange",
128 Self::Exchange { compare: Some(_) } => "", //TODO
129 }
130 }
131}
132
133impl crate::AddressSpace {
134 /// Whether a variable with this address space can be initialized
135 const fn initializable(&self) -> bool {
136 match *self {
137 crate::AddressSpace::Function | crate::AddressSpace::Private => true,
138 crate::AddressSpace::WorkGroup
139 | crate::AddressSpace::Uniform
140 | crate::AddressSpace::Storage { .. }
141 | crate::AddressSpace::Handle
142 | crate::AddressSpace::PushConstant
143 | crate::AddressSpace::TaskPayload => false,
144 }
145 }
146}
147
148/// A GLSL version.
149#[derive(Debug, Copy, Clone, PartialEq)]
150#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
151#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
152pub enum Version {
153 /// `core` GLSL.
154 Desktop(u16),
155 /// `es` GLSL.
156 Embedded { version: u16, is_webgl: bool },
157}
158
159impl Version {
160 /// Create a new gles version
161 pub const fn new_gles(version: u16) -> Self {
162 Self::Embedded {
163 version,
164 is_webgl: false,
165 }
166 }
167
168 /// Returns true if self is `Version::Embedded` (i.e. is a es version)
169 const fn is_es(&self) -> bool {
170 match *self {
171 Version::Desktop(_) => false,
172 Version::Embedded { .. } => true,
173 }
174 }
175
176 /// Returns true if targeting WebGL
177 const fn is_webgl(&self) -> bool {
178 match *self {
179 Version::Desktop(_) => false,
180 Version::Embedded { is_webgl, .. } => is_webgl,
181 }
182 }
183
184 /// Checks the list of currently supported versions and returns true if it contains the
185 /// specified version
186 ///
187 /// # Notes
188 /// As an invalid version number will never be added to the supported version list
189 /// so this also checks for version validity
190 fn is_supported(&self) -> bool {
191 match *self {
192 Version::Desktop(v) => SUPPORTED_CORE_VERSIONS.contains(&v),
193 Version::Embedded { version: v, .. } => SUPPORTED_ES_VERSIONS.contains(&v),
194 }
195 }
196
197 fn supports_io_locations(&self) -> bool {
198 *self >= Version::Desktop(330) || *self >= Version::new_gles(300)
199 }
200
201 /// Checks if the version supports all of the explicit layouts:
202 /// - `location=` qualifiers for bindings
203 /// - `binding=` qualifiers for resources
204 ///
205 /// Note: `location=` for vertex inputs and fragment outputs is supported
206 /// unconditionally for GLES 300.
207 fn supports_explicit_locations(&self) -> bool {
208 *self >= Version::Desktop(420) || *self >= Version::new_gles(310)
209 }
210
211 fn supports_early_depth_test(&self) -> bool {
212 *self >= Version::Desktop(130) || *self >= Version::new_gles(310)
213 }
214
215 fn supports_std140_layout(&self) -> bool {
216 *self >= Version::Desktop(140) || *self >= Version::new_gles(300)
217 }
218
219 fn supports_std430_layout(&self) -> bool {
220 *self >= Version::Desktop(430) || *self >= Version::new_gles(310)
221 }
222
223 fn supports_fma_function(&self) -> bool {
224 *self >= Version::Desktop(400) || *self >= Version::new_gles(320)
225 }
226
227 fn supports_integer_functions(&self) -> bool {
228 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
229 }
230
231 fn supports_frexp_function(&self) -> bool {
232 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
233 }
234
235 fn supports_derivative_control(&self) -> bool {
236 *self >= Version::Desktop(450)
237 }
238
239 // For supports_pack_unpack_4x8, supports_pack_unpack_snorm_2x16, supports_pack_unpack_unorm_2x16
240 // see:
241 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/unpackUnorm.xhtml
242 // https://registry.khronos.org/OpenGL-Refpages/es3/html/unpackUnorm.xhtml
243 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/packUnorm.xhtml
244 // https://registry.khronos.org/OpenGL-Refpages/es3/html/packUnorm.xhtml
245 fn supports_pack_unpack_4x8(&self) -> bool {
246 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
247 }
248 fn supports_pack_unpack_snorm_2x16(&self) -> bool {
249 *self >= Version::Desktop(420) || *self >= Version::new_gles(300)
250 }
251 fn supports_pack_unpack_unorm_2x16(&self) -> bool {
252 *self >= Version::Desktop(400) || *self >= Version::new_gles(300)
253 }
254
255 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/unpackHalf2x16.xhtml
256 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/packHalf2x16.xhtml
257 // https://registry.khronos.org/OpenGL-Refpages/es3/html/unpackHalf2x16.xhtml
258 // https://registry.khronos.org/OpenGL-Refpages/es3/html/packHalf2x16.xhtml
259 fn supports_pack_unpack_half_2x16(&self) -> bool {
260 *self >= Version::Desktop(420) || *self >= Version::new_gles(300)
261 }
262}
263
264impl PartialOrd for Version {
265 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
266 match (*self, *other) {
267 (Version::Desktop(x), Version::Desktop(y)) => Some(x.cmp(&y)),
268 (Version::Embedded { version: x, .. }, Version::Embedded { version: y, .. }) => {
269 Some(x.cmp(&y))
270 }
271 _ => None,
272 }
273 }
274}
275
276impl fmt::Display for Version {
277 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
278 match *self {
279 Version::Desktop(v) => write!(f, "{v} core"),
280 Version::Embedded { version: v, .. } => write!(f, "{v} es"),
281 }
282 }
283}
284
285bitflags::bitflags! {
286 /// Configuration flags for the [`Writer`].
287 #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
288 #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
289 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
290 pub struct WriterFlags: u32 {
291 /// Flip output Y and extend Z from (0, 1) to (-1, 1).
292 const ADJUST_COORDINATE_SPACE = 0x1;
293 /// Supports GL_EXT_texture_shadow_lod on the host, which provides
294 /// additional functions on shadows and arrays of shadows.
295 const TEXTURE_SHADOW_LOD = 0x2;
296 /// Supports ARB_shader_draw_parameters on the host, which provides
297 /// support for `gl_BaseInstanceARB`, `gl_BaseVertexARB`, `gl_DrawIDARB`, and `gl_DrawID`.
298 const DRAW_PARAMETERS = 0x4;
299 /// Include unused global variables, constants and functions. By default the output will exclude
300 /// global variables that are not used in the specified entrypoint (including indirect use),
301 /// all constant declarations, and functions that use excluded global variables.
302 const INCLUDE_UNUSED_ITEMS = 0x10;
303 /// Emit `PointSize` output builtin to vertex shaders, which is
304 /// required for drawing with `PointList` topology.
305 ///
306 /// https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#built-in-language-variables
307 /// The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is measured in pixels.
308 /// If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.
309 const FORCE_POINT_SIZE = 0x20;
310 }
311}
312
313/// Configuration used in the [`Writer`].
314#[derive(Debug, Clone)]
315#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
316#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
317#[cfg_attr(feature = "deserialize", serde(default))]
318pub struct Options {
319 /// The GLSL version to be used.
320 pub version: Version,
321 /// Configuration flags for the [`Writer`].
322 pub writer_flags: WriterFlags,
323 /// Map of resources association to binding locations.
324 #[cfg_attr(
325 feature = "deserialize",
326 serde(deserialize_with = "deserialize_binding_map")
327 )]
328 pub binding_map: BindingMap,
329 /// Should workgroup variables be zero initialized (by polyfilling)?
330 pub zero_initialize_workgroup_memory: bool,
331}
332
333impl Default for Options {
334 fn default() -> Self {
335 Options {
336 version: Version::new_gles(310),
337 writer_flags: WriterFlags::ADJUST_COORDINATE_SPACE,
338 binding_map: BindingMap::default(),
339 zero_initialize_workgroup_memory: true,
340 }
341 }
342}
343
344/// A subset of options meant to be changed per pipeline.
345#[derive(Debug, Clone)]
346#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
347#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
348pub struct PipelineOptions {
349 /// The stage of the entry point.
350 pub shader_stage: ShaderStage,
351 /// The name of the entry point.
352 ///
353 /// If no entry point that matches is found while creating a [`Writer`], an
354 /// error will be thrown.
355 pub entry_point: String,
356 /// How many views to render to, if doing multiview rendering.
357 pub multiview: Option<core::num::NonZeroU32>,
358}
359
360#[derive(Debug)]
361pub struct VaryingLocation {
362 /// The location of the global.
363 /// This corresponds to `layout(location = ..)` in GLSL.
364 pub location: u32,
365 /// The index which can be used for dual source blending.
366 /// This corresponds to `layout(index = ..)` in GLSL.
367 pub index: u32,
368}
369
370/// Reflection info for texture mappings and uniforms.
371#[derive(Debug)]
372pub struct ReflectionInfo {
373 /// Mapping between texture names and variables/samplers.
374 pub texture_mapping: crate::FastHashMap<String, TextureMapping>,
375 /// Mapping between uniform variables and names.
376 pub uniforms: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
377 /// Mapping between names and attribute locations.
378 pub varying: crate::FastHashMap<String, VaryingLocation>,
379 /// List of push constant items in the shader.
380 pub push_constant_items: Vec<PushConstantItem>,
381 /// Number of user-defined clip planes. Only applicable to vertex shaders.
382 pub clip_distance_count: u32,
383}
384
385/// Mapping between a texture and its sampler, if it exists.
386///
387/// GLSL pre-Vulkan has no concept of separate textures and samplers. Instead, everything is a
388/// `gsamplerN` where `g` is the scalar type and `N` is the dimension. But naga uses separate textures
389/// and samplers in the IR, so the backend produces a [`FastHashMap`](crate::FastHashMap) with the texture name
390/// as a key and a [`TextureMapping`] as a value. This way, the user knows where to bind.
391///
392/// [`Storage`](crate::ImageClass::Storage) images produce `gimageN` and don't have an associated sampler,
393/// so the [`sampler`](Self::sampler) field will be [`None`].
394#[derive(Debug, Clone)]
395pub struct TextureMapping {
396 /// Handle to the image global variable.
397 pub texture: Handle<crate::GlobalVariable>,
398 /// Handle to the associated sampler global variable, if it exists.
399 pub sampler: Option<Handle<crate::GlobalVariable>>,
400}
401
402/// All information to bind a single uniform value to the shader.
403///
404/// Push constants are emulated using traditional uniforms in OpenGL.
405///
406/// These are composed of a set of primitives (scalar, vector, matrix) that
407/// are given names. Because they are not backed by the concept of a buffer,
408/// we must do the work of calculating the offset of each primitive in the
409/// push constant block.
410#[derive(Debug, Clone)]
411pub struct PushConstantItem {
412 /// GL uniform name for the item. This name is the same as if you were
413 /// to access it directly from a GLSL shader.
414 ///
415 /// The with the following example, the following names will be generated,
416 /// one name per GLSL uniform.
417 ///
418 /// ```glsl
419 /// struct InnerStruct {
420 /// value: f32,
421 /// }
422 ///
423 /// struct PushConstant {
424 /// InnerStruct inner;
425 /// vec4 array[2];
426 /// }
427 ///
428 /// uniform PushConstants _push_constant_binding_cs;
429 /// ```
430 ///
431 /// ```text
432 /// - _push_constant_binding_cs.inner.value
433 /// - _push_constant_binding_cs.array[0]
434 /// - _push_constant_binding_cs.array[1]
435 /// ```
436 ///
437 pub access_path: String,
438 /// Type of the uniform. This will only ever be a scalar, vector, or matrix.
439 pub ty: Handle<crate::Type>,
440 /// The offset in the push constant memory block this uniform maps to.
441 ///
442 /// The size of the uniform can be derived from the type.
443 pub offset: u32,
444}
445
446/// Helper structure that generates a number
447#[derive(Default)]
448struct IdGenerator(u32);
449
450impl IdGenerator {
451 /// Generates a number that's guaranteed to be unique for this `IdGenerator`
452 fn generate(&mut self) -> u32 {
453 // It's just an increasing number but it does the job
454 let ret = self.0;
455 self.0 += 1;
456 ret
457 }
458}
459
460/// Assorted options needed for generating varyings.
461#[derive(Clone, Copy)]
462struct VaryingOptions {
463 output: bool,
464 targeting_webgl: bool,
465 draw_parameters: bool,
466}
467
468impl VaryingOptions {
469 const fn from_writer_options(options: &Options, output: bool) -> Self {
470 Self {
471 output,
472 targeting_webgl: options.version.is_webgl(),
473 draw_parameters: options.writer_flags.contains(WriterFlags::DRAW_PARAMETERS),
474 }
475 }
476}
477
478/// Helper wrapper used to get a name for a varying
479///
480/// Varying have different naming schemes depending on their binding:
481/// - Varyings with builtin bindings get their name from [`glsl_built_in`].
482/// - Varyings with location bindings are named `_S_location_X` where `S` is a
483/// prefix identifying which pipeline stage the varying connects, and `X` is
484/// the location.
485struct VaryingName<'a> {
486 binding: &'a crate::Binding,
487 stage: ShaderStage,
488 options: VaryingOptions,
489}
490impl fmt::Display for VaryingName<'_> {
491 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
492 match *self.binding {
493 crate::Binding::Location {
494 blend_src: Some(1), ..
495 } => {
496 write!(f, "_fs2p_location1",)
497 }
498 crate::Binding::Location { location, .. } => {
499 let prefix = match (self.stage, self.options.output) {
500 (ShaderStage::Compute, _) => unreachable!(),
501 // pipeline to vertex
502 (ShaderStage::Vertex, false) => "p2vs",
503 // vertex to fragment
504 (ShaderStage::Vertex, true) | (ShaderStage::Fragment, false) => "vs2fs",
505 // fragment to pipeline
506 (ShaderStage::Fragment, true) => "fs2p",
507 (ShaderStage::Task | ShaderStage::Mesh, _) => unreachable!(),
508 };
509 write!(f, "_{prefix}_location{location}",)
510 }
511 crate::Binding::BuiltIn(built_in) => {
512 write!(f, "{}", glsl_built_in(built_in, self.options))
513 }
514 }
515 }
516}
517
518impl ShaderStage {
519 const fn to_str(self) -> &'static str {
520 match self {
521 ShaderStage::Compute => "cs",
522 ShaderStage::Fragment => "fs",
523 ShaderStage::Vertex => "vs",
524 ShaderStage::Task | ShaderStage::Mesh => unreachable!(),
525 }
526 }
527}
528
529/// Shorthand result used internally by the backend
530type BackendResult<T = ()> = Result<T, Error>;
531
532/// A GLSL compilation error.
533#[derive(Debug, Error)]
534pub enum Error {
535 /// A error occurred while writing to the output.
536 #[error("Format error")]
537 FmtError(#[from] FmtError),
538 /// The specified [`Version`] doesn't have all required [`Features`].
539 ///
540 /// Contains the missing [`Features`].
541 #[error("The selected version doesn't support {0:?}")]
542 MissingFeatures(Features),
543 /// [`AddressSpace::PushConstant`](crate::AddressSpace::PushConstant) was used more than
544 /// once in the entry point, which isn't supported.
545 #[error("Multiple push constants aren't supported")]
546 MultiplePushConstants,
547 /// The specified [`Version`] isn't supported.
548 #[error("The specified version isn't supported")]
549 VersionNotSupported,
550 /// The entry point couldn't be found.
551 #[error("The requested entry point couldn't be found")]
552 EntryPointNotFound,
553 /// A call was made to an unsupported external.
554 #[error("A call was made to an unsupported external: {0}")]
555 UnsupportedExternal(String),
556 /// A scalar with an unsupported width was requested.
557 #[error("A scalar with an unsupported width was requested: {0:?}")]
558 UnsupportedScalar(crate::Scalar),
559 /// A image was used with multiple samplers, which isn't supported.
560 #[error("A image was used with multiple samplers")]
561 ImageMultipleSamplers,
562 #[error("{0}")]
563 Custom(String),
564 #[error("overrides should not be present at this stage")]
565 Override,
566 /// [`crate::Sampling::First`] is unsupported.
567 #[error("`{:?}` sampling is unsupported", crate::Sampling::First)]
568 FirstSamplingNotSupported,
569 #[error(transparent)]
570 ResolveArraySizeError(#[from] proc::ResolveArraySizeError),
571}
572
573/// Binary operation with a different logic on the GLSL side.
574enum BinaryOperation {
575 /// Vector comparison should use the function like `greaterThan()`, etc.
576 VectorCompare,
577 /// Vector component wise operation; used to polyfill unsupported ops like `|` and `&` for `bvecN`'s
578 VectorComponentWise,
579 /// GLSL `%` is SPIR-V `OpUMod/OpSMod` and `mod()` is `OpFMod`, but [`BinaryOperator::Modulo`](crate::BinaryOperator::Modulo) is `OpFRem`.
580 Modulo,
581 /// Any plain operation. No additional logic required.
582 Other,
583}
584
585/// Writer responsible for all code generation.
586pub struct Writer<'a, W> {
587 // Inputs
588 /// The module being written.
589 module: &'a crate::Module,
590 /// The module analysis.
591 info: &'a valid::ModuleInfo,
592 /// The output writer.
593 out: W,
594 /// User defined configuration to be used.
595 options: &'a Options,
596 /// The bound checking policies to be used
597 policies: proc::BoundsCheckPolicies,
598
599 // Internal State
600 /// Features manager used to store all the needed features and write them.
601 features: FeaturesManager,
602 namer: proc::Namer,
603 /// A map with all the names needed for writing the module
604 /// (generated by a [`Namer`](crate::proc::Namer)).
605 names: crate::FastHashMap<NameKey, String>,
606 /// A map with the names of global variables needed for reflections.
607 reflection_names_globals: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
608 /// The selected entry point.
609 entry_point: &'a crate::EntryPoint,
610 /// The index of the selected entry point.
611 entry_point_idx: proc::EntryPointIndex,
612 /// A generator for unique block numbers.
613 block_id: IdGenerator,
614 /// Set of expressions that have associated temporary variables.
615 named_expressions: crate::NamedExpressions,
616 /// Set of expressions that need to be baked to avoid unnecessary repetition in output
617 need_bake_expressions: back::NeedBakeExpressions,
618 /// Information about nesting of loops and switches.
619 ///
620 /// Used for forwarding continue statements in switches that have been
621 /// transformed to `do {} while(false);` loops.
622 continue_ctx: back::continue_forward::ContinueCtx,
623 /// How many views to render to, if doing multiview rendering.
624 multiview: Option<core::num::NonZeroU32>,
625 /// Mapping of varying variables to their location. Needed for reflections.
626 varying: crate::FastHashMap<String, VaryingLocation>,
627 /// Number of user-defined clip planes. Only non-zero for vertex shaders.
628 clip_distance_count: u32,
629}
630
631impl<'a, W: Write> Writer<'a, W> {
632 /// Creates a new [`Writer`] instance.
633 ///
634 /// # Errors
635 /// - If the version specified is invalid or supported.
636 /// - If the entry point couldn't be found in the module.
637 /// - If the version specified doesn't support some used features.
638 pub fn new(
639 out: W,
640 module: &'a crate::Module,
641 info: &'a valid::ModuleInfo,
642 options: &'a Options,
643 pipeline_options: &'a PipelineOptions,
644 policies: proc::BoundsCheckPolicies,
645 ) -> Result<Self, Error> {
646 // Check if the requested version is supported
647 if !options.version.is_supported() {
648 log::error!("Version {}", options.version);
649 return Err(Error::VersionNotSupported);
650 }
651
652 // Try to find the entry point and corresponding index
653 let ep_idx = module
654 .entry_points
655 .iter()
656 .position(|ep| {
657 pipeline_options.shader_stage == ep.stage && pipeline_options.entry_point == ep.name
658 })
659 .ok_or(Error::EntryPointNotFound)?;
660
661 // Generate a map with names required to write the module
662 let mut names = crate::FastHashMap::default();
663 let mut namer = proc::Namer::default();
664 namer.reset(
665 module,
666 &keywords::RESERVED_KEYWORD_SET,
667 proc::CaseInsensitiveKeywordSet::empty(),
668 &[
669 "gl_", // all GL built-in variables
670 "_group", // all normal bindings
671 "_push_constant_binding_", // all push constant bindings
672 ],
673 &mut names,
674 );
675
676 // Build the instance
677 let mut this = Self {
678 module,
679 info,
680 out,
681 options,
682 policies,
683
684 namer,
685 features: FeaturesManager::new(),
686 names,
687 reflection_names_globals: crate::FastHashMap::default(),
688 entry_point: &module.entry_points[ep_idx],
689 entry_point_idx: ep_idx as u16,
690 multiview: pipeline_options.multiview,
691 block_id: IdGenerator::default(),
692 named_expressions: Default::default(),
693 need_bake_expressions: Default::default(),
694 continue_ctx: back::continue_forward::ContinueCtx::default(),
695 varying: Default::default(),
696 clip_distance_count: 0,
697 };
698
699 // Find all features required to print this module
700 this.collect_required_features()?;
701
702 Ok(this)
703 }
704
705 /// Writes the [`Module`](crate::Module) as glsl to the output
706 ///
707 /// # Notes
708 /// If an error occurs while writing, the output might have been written partially
709 ///
710 /// # Panics
711 /// Might panic if the module is invalid
712 pub fn write(&mut self) -> Result<ReflectionInfo, Error> {
713 // We use `writeln!(self.out)` throughout the write to add newlines
714 // to make the output more readable
715
716 let es = self.options.version.is_es();
717
718 // Write the version (It must be the first thing or it isn't a valid glsl output)
719 writeln!(self.out, "#version {}", self.options.version)?;
720 // Write all the needed extensions
721 //
722 // This used to be the last thing being written as it allowed to search for features while
723 // writing the module saving some loops but some older versions (420 or less) required the
724 // extensions to appear before being used, even though extensions are part of the
725 // preprocessor not the processor ¯\_(ツ)_/¯
726 self.features.write(self.options, &mut self.out)?;
727
728 // glsl es requires a precision to be specified for floats and ints
729 // TODO: Should this be user configurable?
730 if es {
731 writeln!(self.out)?;
732 writeln!(self.out, "precision highp float;")?;
733 writeln!(self.out, "precision highp int;")?;
734 writeln!(self.out)?;
735 }
736
737 if self.entry_point.stage == ShaderStage::Compute {
738 let workgroup_size = self.entry_point.workgroup_size;
739 writeln!(
740 self.out,
741 "layout(local_size_x = {}, local_size_y = {}, local_size_z = {}) in;",
742 workgroup_size[0], workgroup_size[1], workgroup_size[2]
743 )?;
744 writeln!(self.out)?;
745 }
746
747 if self.entry_point.stage == ShaderStage::Vertex
748 && !self
749 .options
750 .writer_flags
751 .contains(WriterFlags::DRAW_PARAMETERS)
752 && self.features.contains(Features::INSTANCE_INDEX)
753 {
754 writeln!(self.out, "uniform uint {FIRST_INSTANCE_BINDING};")?;
755 writeln!(self.out)?;
756 }
757
758 // Enable early depth tests if needed
759 if let Some(early_depth_test) = self.entry_point.early_depth_test {
760 // If early depth test is supported for this version of GLSL
761 if self.options.version.supports_early_depth_test() {
762 match early_depth_test {
763 crate::EarlyDepthTest::Force => {
764 writeln!(self.out, "layout(early_fragment_tests) in;")?;
765 }
766 crate::EarlyDepthTest::Allow { conservative, .. } => {
767 use crate::ConservativeDepth as Cd;
768 let depth = match conservative {
769 Cd::GreaterEqual => "greater",
770 Cd::LessEqual => "less",
771 Cd::Unchanged => "unchanged",
772 };
773 writeln!(self.out, "layout (depth_{depth}) out float gl_FragDepth;")?;
774 }
775 }
776 } else {
777 log::warn!(
778 "Early depth testing is not supported for this version of GLSL: {}",
779 self.options.version
780 );
781 }
782 }
783
784 if self.entry_point.stage == ShaderStage::Vertex && self.options.version.is_webgl() {
785 if let Some(multiview) = self.multiview.as_ref() {
786 writeln!(self.out, "layout(num_views = {multiview}) in;")?;
787 writeln!(self.out)?;
788 }
789 }
790
791 // Write struct types.
792 //
793 // This are always ordered because the IR is structured in a way that
794 // you can't make a struct without adding all of its members first.
795 for (handle, ty) in self.module.types.iter() {
796 if let TypeInner::Struct { ref members, .. } = ty.inner {
797 let struct_name = &self.names[&NameKey::Type(handle)];
798
799 // Structures ending with runtime-sized arrays can only be
800 // rendered as shader storage blocks in GLSL, not stand-alone
801 // struct types.
802 if !self.module.types[members.last().unwrap().ty]
803 .inner
804 .is_dynamically_sized(&self.module.types)
805 {
806 write!(self.out, "struct {struct_name} ")?;
807 self.write_struct_body(handle, members)?;
808 writeln!(self.out, ";")?;
809 }
810 }
811 }
812
813 // Write functions for special types.
814 for (type_key, struct_ty) in self.module.special_types.predeclared_types.iter() {
815 match type_key {
816 &crate::PredeclaredType::ModfResult { size, scalar }
817 | &crate::PredeclaredType::FrexpResult { size, scalar } => {
818 let struct_name = &self.names[&NameKey::Type(*struct_ty)];
819 let arg_type_name_owner;
820 let arg_type_name = if let Some(size) = size {
821 arg_type_name_owner = format!(
822 "{}vec{}",
823 if scalar.width == 8 { "d" } else { "" },
824 size as u8
825 );
826 &arg_type_name_owner
827 } else if scalar.width == 8 {
828 "double"
829 } else {
830 "float"
831 };
832
833 let other_type_name_owner;
834 let (defined_func_name, called_func_name, other_type_name) =
835 if matches!(type_key, &crate::PredeclaredType::ModfResult { .. }) {
836 (MODF_FUNCTION, "modf", arg_type_name)
837 } else {
838 let other_type_name = if let Some(size) = size {
839 other_type_name_owner = format!("ivec{}", size as u8);
840 &other_type_name_owner
841 } else {
842 "int"
843 };
844 (FREXP_FUNCTION, "frexp", other_type_name)
845 };
846
847 writeln!(self.out)?;
848 if !self.options.version.supports_frexp_function()
849 && matches!(type_key, &crate::PredeclaredType::FrexpResult { .. })
850 {
851 writeln!(
852 self.out,
853 "{struct_name} {defined_func_name}({arg_type_name} arg) {{
854 {other_type_name} other = arg == {arg_type_name}(0) ? {other_type_name}(0) : {other_type_name}({arg_type_name}(1) + log2(arg));
855 {arg_type_name} fract = arg * exp2({arg_type_name}(-other));
856 return {struct_name}(fract, other);
857}}",
858 )?;
859 } else {
860 writeln!(
861 self.out,
862 "{struct_name} {defined_func_name}({arg_type_name} arg) {{
863 {other_type_name} other;
864 {arg_type_name} fract = {called_func_name}(arg, other);
865 return {struct_name}(fract, other);
866}}",
867 )?;
868 }
869 }
870 &crate::PredeclaredType::AtomicCompareExchangeWeakResult(_) => {
871 // Handled by the general struct writing loop earlier.
872 }
873 }
874 }
875
876 // Write all named constants
877 let mut constants = self
878 .module
879 .constants
880 .iter()
881 .filter(|&(_, c)| c.name.is_some())
882 .peekable();
883 while let Some((handle, _)) = constants.next() {
884 self.write_global_constant(handle)?;
885 // Add extra newline for readability on last iteration
886 if constants.peek().is_none() {
887 writeln!(self.out)?;
888 }
889 }
890
891 let ep_info = self.info.get_entry_point(self.entry_point_idx as usize);
892
893 // Write the globals
894 //
895 // Unless explicitly disabled with WriterFlags::INCLUDE_UNUSED_ITEMS,
896 // we filter all globals that aren't used by the selected entry point as they might be
897 // interfere with each other (i.e. two globals with the same location but different with
898 // different classes)
899 let include_unused = self
900 .options
901 .writer_flags
902 .contains(WriterFlags::INCLUDE_UNUSED_ITEMS);
903 for (handle, global) in self.module.global_variables.iter() {
904 let is_unused = ep_info[handle].is_empty();
905 if !include_unused && is_unused {
906 continue;
907 }
908
909 match self.module.types[global.ty].inner {
910 // We treat images separately because they might require
911 // writing the storage format
912 TypeInner::Image {
913 mut dim,
914 arrayed,
915 class,
916 } => {
917 // Gather the storage format if needed
918 let storage_format_access = match self.module.types[global.ty].inner {
919 TypeInner::Image {
920 class: crate::ImageClass::Storage { format, access },
921 ..
922 } => Some((format, access)),
923 _ => None,
924 };
925
926 if dim == crate::ImageDimension::D1 && es {
927 dim = crate::ImageDimension::D2
928 }
929
930 // Gether the location if needed
931 let layout_binding = if self.options.version.supports_explicit_locations() {
932 let br = global.binding.as_ref().unwrap();
933 self.options.binding_map.get(br).cloned()
934 } else {
935 None
936 };
937
938 // Write all the layout qualifiers
939 if layout_binding.is_some() || storage_format_access.is_some() {
940 write!(self.out, "layout(")?;
941 if let Some(binding) = layout_binding {
942 write!(self.out, "binding = {binding}")?;
943 }
944 if let Some((format, _)) = storage_format_access {
945 let format_str = glsl_storage_format(format)?;
946 let separator = match layout_binding {
947 Some(_) => ",",
948 None => "",
949 };
950 write!(self.out, "{separator}{format_str}")?;
951 }
952 write!(self.out, ") ")?;
953 }
954
955 if let Some((_, access)) = storage_format_access {
956 self.write_storage_access(access)?;
957 }
958
959 // All images in glsl are `uniform`
960 // The trailing space is important
961 write!(self.out, "uniform ")?;
962
963 // write the type
964 //
965 // This is way we need the leading space because `write_image_type` doesn't add
966 // any spaces at the beginning or end
967 self.write_image_type(dim, arrayed, class)?;
968
969 // Finally write the name and end the global with a `;`
970 // The leading space is important
971 let global_name = self.get_global_name(handle, global);
972 writeln!(self.out, " {global_name};")?;
973 writeln!(self.out)?;
974
975 self.reflection_names_globals.insert(handle, global_name);
976 }
977 // glsl has no concept of samplers so we just ignore it
978 TypeInner::Sampler { .. } => continue,
979 // All other globals are written by `write_global`
980 _ => {
981 self.write_global(handle, global)?;
982 // Add a newline (only for readability)
983 writeln!(self.out)?;
984 }
985 }
986 }
987
988 for arg in self.entry_point.function.arguments.iter() {
989 self.write_varying(arg.binding.as_ref(), arg.ty, false)?;
990 }
991 if let Some(ref result) = self.entry_point.function.result {
992 self.write_varying(result.binding.as_ref(), result.ty, true)?;
993 }
994 writeln!(self.out)?;
995
996 // Write all regular functions
997 for (handle, function) in self.module.functions.iter() {
998 // Check that the function doesn't use globals that aren't supported
999 // by the current entry point
1000 if !include_unused && !ep_info.dominates_global_use(&self.info[handle]) {
1001 continue;
1002 }
1003
1004 let fun_info = &self.info[handle];
1005
1006 // Skip functions that that are not compatible with this entry point's stage.
1007 //
1008 // When validation is enabled, it rejects modules whose entry points try to call
1009 // incompatible functions, so if we got this far, then any functions incompatible
1010 // with our selected entry point must not be used.
1011 //
1012 // When validation is disabled, `fun_info.available_stages` is always just
1013 // `ShaderStages::all()`, so this will write all functions in the module, and
1014 // the downstream GLSL compiler will catch any problems.
1015 if !fun_info.available_stages.contains(ep_info.available_stages) {
1016 continue;
1017 }
1018
1019 // Write the function
1020 self.write_function(back::FunctionType::Function(handle), function, fun_info)?;
1021
1022 writeln!(self.out)?;
1023 }
1024
1025 self.write_function(
1026 back::FunctionType::EntryPoint(self.entry_point_idx),
1027 &self.entry_point.function,
1028 ep_info,
1029 )?;
1030
1031 // Add newline at the end of file
1032 writeln!(self.out)?;
1033
1034 // Collect all reflection info and return it to the user
1035 self.collect_reflection_info()
1036 }
1037
1038 fn write_array_size(
1039 &mut self,
1040 base: Handle<crate::Type>,
1041 size: crate::ArraySize,
1042 ) -> BackendResult {
1043 write!(self.out, "[")?;
1044
1045 // Write the array size
1046 // Writes nothing if `IndexableLength::Dynamic`
1047 match size.resolve(self.module.to_ctx())? {
1048 proc::IndexableLength::Known(size) => {
1049 write!(self.out, "{size}")?;
1050 }
1051 proc::IndexableLength::Dynamic => (),
1052 }
1053
1054 write!(self.out, "]")?;
1055
1056 if let TypeInner::Array {
1057 base: next_base,
1058 size: next_size,
1059 ..
1060 } = self.module.types[base].inner
1061 {
1062 self.write_array_size(next_base, next_size)?;
1063 }
1064
1065 Ok(())
1066 }
1067
1068 /// Helper method used to write value types
1069 ///
1070 /// # Notes
1071 /// Adds no trailing or leading whitespace
1072 fn write_value_type(&mut self, inner: &TypeInner) -> BackendResult {
1073 match *inner {
1074 // Scalars are simple we just get the full name from `glsl_scalar`
1075 TypeInner::Scalar(scalar)
1076 | TypeInner::Atomic(scalar)
1077 | TypeInner::ValuePointer {
1078 size: None,
1079 scalar,
1080 space: _,
1081 } => write!(self.out, "{}", glsl_scalar(scalar)?.full)?,
1082 // Vectors are just `gvecN` where `g` is the scalar prefix and `N` is the vector size
1083 TypeInner::Vector { size, scalar }
1084 | TypeInner::ValuePointer {
1085 size: Some(size),
1086 scalar,
1087 space: _,
1088 } => write!(self.out, "{}vec{}", glsl_scalar(scalar)?.prefix, size as u8)?,
1089 // Matrices are written with `gmatMxN` where `g` is the scalar prefix (only floats and
1090 // doubles are allowed), `M` is the columns count and `N` is the rows count
1091 //
1092 // glsl supports a matrix shorthand `gmatN` where `N` = `M` but it doesn't justify the
1093 // extra branch to write matrices this way
1094 TypeInner::Matrix {
1095 columns,
1096 rows,
1097 scalar,
1098 } => write!(
1099 self.out,
1100 "{}mat{}x{}",
1101 glsl_scalar(scalar)?.prefix,
1102 columns as u8,
1103 rows as u8
1104 )?,
1105 // GLSL arrays are written as `type name[size]`
1106 // Here we only write the size of the array i.e. `[size]`
1107 // Base `type` and `name` should be written outside
1108 TypeInner::Array { base, size, .. } => self.write_array_size(base, size)?,
1109 // Write all variants instead of `_` so that if new variants are added a
1110 // no exhaustiveness error is thrown
1111 TypeInner::Pointer { .. }
1112 | TypeInner::Struct { .. }
1113 | TypeInner::Image { .. }
1114 | TypeInner::Sampler { .. }
1115 | TypeInner::AccelerationStructure { .. }
1116 | TypeInner::RayQuery { .. }
1117 | TypeInner::BindingArray { .. } => {
1118 return Err(Error::Custom(format!("Unable to write type {inner:?}")))
1119 }
1120 }
1121
1122 Ok(())
1123 }
1124
1125 /// Helper method used to write non image/sampler types
1126 ///
1127 /// # Notes
1128 /// Adds no trailing or leading whitespace
1129 fn write_type(&mut self, ty: Handle<crate::Type>) -> BackendResult {
1130 match self.module.types[ty].inner {
1131 // glsl has no pointer types so just write types as normal and loads are skipped
1132 TypeInner::Pointer { base, .. } => self.write_type(base),
1133 // glsl structs are written as just the struct name
1134 TypeInner::Struct { .. } => {
1135 // Get the struct name
1136 let name = &self.names[&NameKey::Type(ty)];
1137 write!(self.out, "{name}")?;
1138 Ok(())
1139 }
1140 // glsl array has the size separated from the base type
1141 TypeInner::Array { base, .. } => self.write_type(base),
1142 ref other => self.write_value_type(other),
1143 }
1144 }
1145
1146 /// Helper method to write a image type
1147 ///
1148 /// # Notes
1149 /// Adds no leading or trailing whitespace
1150 fn write_image_type(
1151 &mut self,
1152 dim: crate::ImageDimension,
1153 arrayed: bool,
1154 class: crate::ImageClass,
1155 ) -> BackendResult {
1156 // glsl images consist of four parts the scalar prefix, the image "type", the dimensions
1157 // and modifiers
1158 //
1159 // There exists two image types
1160 // - sampler - for sampled images
1161 // - image - for storage images
1162 //
1163 // There are three possible modifiers that can be used together and must be written in
1164 // this order to be valid
1165 // - MS - used if it's a multisampled image
1166 // - Array - used if it's an image array
1167 // - Shadow - used if it's a depth image
1168 use crate::ImageClass as Ic;
1169 use crate::Scalar as S;
1170 let float = S {
1171 kind: crate::ScalarKind::Float,
1172 width: 4,
1173 };
1174 let (base, scalar, ms, comparison) = match class {
1175 Ic::Sampled { kind, multi: true } => ("sampler", S { kind, width: 4 }, "MS", ""),
1176 Ic::Sampled { kind, multi: false } => ("sampler", S { kind, width: 4 }, "", ""),
1177 Ic::Depth { multi: true } => ("sampler", float, "MS", ""),
1178 Ic::Depth { multi: false } => ("sampler", float, "", "Shadow"),
1179 Ic::Storage { format, .. } => ("image", format.into(), "", ""),
1180 Ic::External => unimplemented!(),
1181 };
1182
1183 let precision = if self.options.version.is_es() {
1184 "highp "
1185 } else {
1186 ""
1187 };
1188
1189 write!(
1190 self.out,
1191 "{}{}{}{}{}{}{}",
1192 precision,
1193 glsl_scalar(scalar)?.prefix,
1194 base,
1195 glsl_dimension(dim),
1196 ms,
1197 if arrayed { "Array" } else { "" },
1198 comparison
1199 )?;
1200
1201 Ok(())
1202 }
1203
1204 /// Helper method used by [Self::write_global] to write just the layout part of
1205 /// a non image/sampler global variable, if applicable.
1206 ///
1207 /// # Notes
1208 ///
1209 /// Adds trailing whitespace if any layout qualifier is written
1210 fn write_global_layout(&mut self, global: &crate::GlobalVariable) -> BackendResult {
1211 // Determine which (if any) explicit memory layout to use, and whether we support it
1212 let layout = match global.space {
1213 crate::AddressSpace::Uniform => {
1214 if !self.options.version.supports_std140_layout() {
1215 return Err(Error::Custom(
1216 "Uniform address space requires std140 layout support".to_string(),
1217 ));
1218 }
1219
1220 Some("std140")
1221 }
1222 crate::AddressSpace::Storage { .. } => {
1223 if !self.options.version.supports_std430_layout() {
1224 return Err(Error::Custom(
1225 "Storage address space requires std430 layout support".to_string(),
1226 ));
1227 }
1228
1229 Some("std430")
1230 }
1231 _ => None,
1232 };
1233
1234 // If our version supports explicit layouts, we can also output the explicit binding
1235 // if we have it
1236 if self.options.version.supports_explicit_locations() {
1237 if let Some(ref br) = global.binding {
1238 match self.options.binding_map.get(br) {
1239 Some(binding) => {
1240 write!(self.out, "layout(")?;
1241
1242 if let Some(layout) = layout {
1243 write!(self.out, "{layout}, ")?;
1244 }
1245
1246 write!(self.out, "binding = {binding}) ")?;
1247
1248 return Ok(());
1249 }
1250 None => {
1251 log::debug!("unassigned binding for {:?}", global.name);
1252 }
1253 }
1254 }
1255 }
1256
1257 // Either no explicit bindings are supported or we didn't have any.
1258 // Write just the memory layout.
1259 if let Some(layout) = layout {
1260 write!(self.out, "layout({layout}) ")?;
1261 }
1262
1263 Ok(())
1264 }
1265
1266 /// Helper method used to write non images/sampler globals
1267 ///
1268 /// # Notes
1269 /// Adds a newline
1270 ///
1271 /// # Panics
1272 /// If the global has type sampler
1273 fn write_global(
1274 &mut self,
1275 handle: Handle<crate::GlobalVariable>,
1276 global: &crate::GlobalVariable,
1277 ) -> BackendResult {
1278 self.write_global_layout(global)?;
1279
1280 if let crate::AddressSpace::Storage { access } = global.space {
1281 self.write_storage_access(access)?;
1282 }
1283
1284 if let Some(storage_qualifier) = glsl_storage_qualifier(global.space) {
1285 write!(self.out, "{storage_qualifier} ")?;
1286 }
1287
1288 match global.space {
1289 crate::AddressSpace::Private => {
1290 self.write_simple_global(handle, global)?;
1291 }
1292 crate::AddressSpace::WorkGroup => {
1293 self.write_simple_global(handle, global)?;
1294 }
1295 crate::AddressSpace::PushConstant => {
1296 self.write_simple_global(handle, global)?;
1297 }
1298 crate::AddressSpace::Uniform => {
1299 self.write_interface_block(handle, global)?;
1300 }
1301 crate::AddressSpace::Storage { .. } => {
1302 self.write_interface_block(handle, global)?;
1303 }
1304 crate::AddressSpace::TaskPayload => {
1305 self.write_interface_block(handle, global)?;
1306 }
1307 // A global variable in the `Function` address space is a
1308 // contradiction in terms.
1309 crate::AddressSpace::Function => unreachable!(),
1310 // Textures and samplers are handled directly in `Writer::write`.
1311 crate::AddressSpace::Handle => unreachable!(),
1312 }
1313
1314 Ok(())
1315 }
1316
1317 fn write_simple_global(
1318 &mut self,
1319 handle: Handle<crate::GlobalVariable>,
1320 global: &crate::GlobalVariable,
1321 ) -> BackendResult {
1322 self.write_type(global.ty)?;
1323 write!(self.out, " ")?;
1324 self.write_global_name(handle, global)?;
1325
1326 if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
1327 self.write_array_size(base, size)?;
1328 }
1329
1330 if global.space.initializable() && is_value_init_supported(self.module, global.ty) {
1331 write!(self.out, " = ")?;
1332 if let Some(init) = global.init {
1333 self.write_const_expr(init, &self.module.global_expressions)?;
1334 } else {
1335 self.write_zero_init_value(global.ty)?;
1336 }
1337 }
1338
1339 writeln!(self.out, ";")?;
1340
1341 if let crate::AddressSpace::PushConstant = global.space {
1342 let global_name = self.get_global_name(handle, global);
1343 self.reflection_names_globals.insert(handle, global_name);
1344 }
1345
1346 Ok(())
1347 }
1348
1349 /// Write an interface block for a single Naga global.
1350 ///
1351 /// Write `block_name { members }`. Since `block_name` must be unique
1352 /// between blocks and structs, we add `_block_ID` where `ID` is a
1353 /// `IdGenerator` generated number. Write `members` in the same way we write
1354 /// a struct's members.
1355 fn write_interface_block(
1356 &mut self,
1357 handle: Handle<crate::GlobalVariable>,
1358 global: &crate::GlobalVariable,
1359 ) -> BackendResult {
1360 // Write the block name, it's just the struct name appended with `_block_ID`
1361 let ty_name = &self.names[&NameKey::Type(global.ty)];
1362 let block_name = format!(
1363 "{}_block_{}{:?}",
1364 // avoid double underscores as they are reserved in GLSL
1365 ty_name.trim_end_matches('_'),
1366 self.block_id.generate(),
1367 self.entry_point.stage,
1368 );
1369 write!(self.out, "{block_name} ")?;
1370 self.reflection_names_globals.insert(handle, block_name);
1371
1372 match self.module.types[global.ty].inner {
1373 TypeInner::Struct { ref members, .. }
1374 if self.module.types[members.last().unwrap().ty]
1375 .inner
1376 .is_dynamically_sized(&self.module.types) =>
1377 {
1378 // Structs with dynamically sized arrays must have their
1379 // members lifted up as members of the interface block. GLSL
1380 // can't write such struct types anyway.
1381 self.write_struct_body(global.ty, members)?;
1382 write!(self.out, " ")?;
1383 self.write_global_name(handle, global)?;
1384 }
1385 _ => {
1386 // A global of any other type is written as the sole member
1387 // of the interface block. Since the interface block is
1388 // anonymous, this becomes visible in the global scope.
1389 write!(self.out, "{{ ")?;
1390 self.write_type(global.ty)?;
1391 write!(self.out, " ")?;
1392 self.write_global_name(handle, global)?;
1393 if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
1394 self.write_array_size(base, size)?;
1395 }
1396 write!(self.out, "; }}")?;
1397 }
1398 }
1399
1400 writeln!(self.out, ";")?;
1401
1402 Ok(())
1403 }
1404
1405 /// Helper method used to find which expressions of a given function require baking
1406 ///
1407 /// # Notes
1408 /// Clears `need_bake_expressions` set before adding to it
1409 fn update_expressions_to_bake(&mut self, func: &crate::Function, info: &valid::FunctionInfo) {
1410 use crate::Expression;
1411 self.need_bake_expressions.clear();
1412 for (fun_handle, expr) in func.expressions.iter() {
1413 let expr_info = &info[fun_handle];
1414 let min_ref_count = func.expressions[fun_handle].bake_ref_count();
1415 if min_ref_count <= expr_info.ref_count {
1416 self.need_bake_expressions.insert(fun_handle);
1417 }
1418
1419 let inner = expr_info.ty.inner_with(&self.module.types);
1420
1421 if let Expression::Math {
1422 fun,
1423 arg,
1424 arg1,
1425 arg2,
1426 ..
1427 } = *expr
1428 {
1429 match fun {
1430 crate::MathFunction::Dot => {
1431 // if the expression is a Dot product with integer arguments,
1432 // then the args needs baking as well
1433 if let TypeInner::Scalar(crate::Scalar {
1434 kind: crate::ScalarKind::Sint | crate::ScalarKind::Uint,
1435 ..
1436 }) = *inner
1437 {
1438 self.need_bake_expressions.insert(arg);
1439 self.need_bake_expressions.insert(arg1.unwrap());
1440 }
1441 }
1442 crate::MathFunction::Dot4U8Packed | crate::MathFunction::Dot4I8Packed => {
1443 self.need_bake_expressions.insert(arg);
1444 self.need_bake_expressions.insert(arg1.unwrap());
1445 }
1446 crate::MathFunction::Pack4xI8
1447 | crate::MathFunction::Pack4xU8
1448 | crate::MathFunction::Pack4xI8Clamp
1449 | crate::MathFunction::Pack4xU8Clamp
1450 | crate::MathFunction::Unpack4xI8
1451 | crate::MathFunction::Unpack4xU8
1452 | crate::MathFunction::QuantizeToF16 => {
1453 self.need_bake_expressions.insert(arg);
1454 }
1455 /* crate::MathFunction::Pack4x8unorm | */
1456 crate::MathFunction::Unpack4x8snorm
1457 if !self.options.version.supports_pack_unpack_4x8() =>
1458 {
1459 // We have a fallback if the platform doesn't natively support these
1460 self.need_bake_expressions.insert(arg);
1461 }
1462 /* crate::MathFunction::Pack4x8unorm | */
1463 crate::MathFunction::Unpack4x8unorm
1464 if !self.options.version.supports_pack_unpack_4x8() =>
1465 {
1466 self.need_bake_expressions.insert(arg);
1467 }
1468 /* crate::MathFunction::Pack2x16snorm | */
1469 crate::MathFunction::Unpack2x16snorm
1470 if !self.options.version.supports_pack_unpack_snorm_2x16() =>
1471 {
1472 self.need_bake_expressions.insert(arg);
1473 }
1474 /* crate::MathFunction::Pack2x16unorm | */
1475 crate::MathFunction::Unpack2x16unorm
1476 if !self.options.version.supports_pack_unpack_unorm_2x16() =>
1477 {
1478 self.need_bake_expressions.insert(arg);
1479 }
1480 crate::MathFunction::ExtractBits => {
1481 // Only argument 1 is re-used.
1482 self.need_bake_expressions.insert(arg1.unwrap());
1483 }
1484 crate::MathFunction::InsertBits => {
1485 // Only argument 2 is re-used.
1486 self.need_bake_expressions.insert(arg2.unwrap());
1487 }
1488 crate::MathFunction::CountLeadingZeros => {
1489 if let Some(crate::ScalarKind::Sint) = inner.scalar_kind() {
1490 self.need_bake_expressions.insert(arg);
1491 }
1492 }
1493 _ => {}
1494 }
1495 }
1496 }
1497
1498 for statement in func.body.iter() {
1499 match *statement {
1500 crate::Statement::Atomic {
1501 fun: crate::AtomicFunction::Exchange { compare: Some(cmp) },
1502 ..
1503 } => {
1504 self.need_bake_expressions.insert(cmp);
1505 }
1506 _ => {}
1507 }
1508 }
1509 }
1510
1511 /// Helper method used to get a name for a global
1512 ///
1513 /// Globals have different naming schemes depending on their binding:
1514 /// - Globals without bindings use the name from the [`Namer`](crate::proc::Namer)
1515 /// - Globals with resource binding are named `_group_X_binding_Y` where `X`
1516 /// is the group and `Y` is the binding
1517 fn get_global_name(
1518 &self,
1519 handle: Handle<crate::GlobalVariable>,
1520 global: &crate::GlobalVariable,
1521 ) -> String {
1522 match (&global.binding, global.space) {
1523 (&Some(ref br), _) => {
1524 format!(
1525 "_group_{}_binding_{}_{}",
1526 br.group,
1527 br.binding,
1528 self.entry_point.stage.to_str()
1529 )
1530 }
1531 (&None, crate::AddressSpace::PushConstant) => {
1532 format!("_push_constant_binding_{}", self.entry_point.stage.to_str())
1533 }
1534 (&None, _) => self.names[&NameKey::GlobalVariable(handle)].clone(),
1535 }
1536 }
1537
1538 /// Helper method used to write a name for a global without additional heap allocation
1539 fn write_global_name(
1540 &mut self,
1541 handle: Handle<crate::GlobalVariable>,
1542 global: &crate::GlobalVariable,
1543 ) -> BackendResult {
1544 match (&global.binding, global.space) {
1545 (&Some(ref br), _) => write!(
1546 self.out,
1547 "_group_{}_binding_{}_{}",
1548 br.group,
1549 br.binding,
1550 self.entry_point.stage.to_str()
1551 )?,
1552 (&None, crate::AddressSpace::PushConstant) => write!(
1553 self.out,
1554 "_push_constant_binding_{}",
1555 self.entry_point.stage.to_str()
1556 )?,
1557 (&None, _) => write!(
1558 self.out,
1559 "{}",
1560 &self.names[&NameKey::GlobalVariable(handle)]
1561 )?,
1562 }
1563
1564 Ok(())
1565 }
1566
1567 /// Write a GLSL global that will carry a Naga entry point's argument or return value.
1568 ///
1569 /// A Naga entry point's arguments and return value are rendered in GLSL as
1570 /// variables at global scope with the `in` and `out` storage qualifiers.
1571 /// The code we generate for `main` loads from all the `in` globals into
1572 /// appropriately named locals. Before it returns, `main` assigns the
1573 /// components of its return value into all the `out` globals.
1574 ///
1575 /// This function writes a declaration for one such GLSL global,
1576 /// representing a value passed into or returned from [`self.entry_point`]
1577 /// that has a [`Location`] binding. The global's name is generated based on
1578 /// the location index and the shader stages being connected; see
1579 /// [`VaryingName`]. This means we don't need to know the names of
1580 /// arguments, just their types and bindings.
1581 ///
1582 /// Emit nothing for entry point arguments or return values with [`BuiltIn`]
1583 /// bindings; `main` will read from or assign to the appropriate GLSL
1584 /// special variable; these are pre-declared. As an exception, we do declare
1585 /// `gl_Position` or `gl_FragCoord` with the `invariant` qualifier if
1586 /// needed.
1587 ///
1588 /// Use `output` together with [`self.entry_point.stage`] to determine which
1589 /// shader stages are being connected, and choose the `in` or `out` storage
1590 /// qualifier.
1591 ///
1592 /// [`self.entry_point`]: Writer::entry_point
1593 /// [`self.entry_point.stage`]: crate::EntryPoint::stage
1594 /// [`Location`]: crate::Binding::Location
1595 /// [`BuiltIn`]: crate::Binding::BuiltIn
1596 fn write_varying(
1597 &mut self,
1598 binding: Option<&crate::Binding>,
1599 ty: Handle<crate::Type>,
1600 output: bool,
1601 ) -> Result<(), Error> {
1602 // For a struct, emit a separate global for each member with a binding.
1603 if let TypeInner::Struct { ref members, .. } = self.module.types[ty].inner {
1604 for member in members {
1605 self.write_varying(member.binding.as_ref(), member.ty, output)?;
1606 }
1607 return Ok(());
1608 }
1609
1610 let binding = match binding {
1611 None => return Ok(()),
1612 Some(binding) => binding,
1613 };
1614
1615 let (location, interpolation, sampling, blend_src) = match *binding {
1616 crate::Binding::Location {
1617 location,
1618 interpolation,
1619 sampling,
1620 blend_src,
1621 per_primitive: _,
1622 } => (location, interpolation, sampling, blend_src),
1623 crate::Binding::BuiltIn(built_in) => {
1624 match built_in {
1625 crate::BuiltIn::Position { invariant: true } => {
1626 match (self.options.version, self.entry_point.stage) {
1627 (
1628 Version::Embedded {
1629 version: 300,
1630 is_webgl: true,
1631 },
1632 ShaderStage::Fragment,
1633 ) => {
1634 // `invariant gl_FragCoord` is not allowed in WebGL2 and possibly
1635 // OpenGL ES in general (waiting on confirmation).
1636 //
1637 // See https://github.com/KhronosGroup/WebGL/issues/3518
1638 }
1639 _ => {
1640 writeln!(
1641 self.out,
1642 "invariant {};",
1643 glsl_built_in(
1644 built_in,
1645 VaryingOptions::from_writer_options(self.options, output)
1646 )
1647 )?;
1648 }
1649 }
1650 }
1651 crate::BuiltIn::ClipDistance => {
1652 // Re-declare `gl_ClipDistance` with number of clip planes.
1653 let TypeInner::Array { size, .. } = self.module.types[ty].inner else {
1654 unreachable!();
1655 };
1656 let proc::IndexableLength::Known(size) =
1657 size.resolve(self.module.to_ctx())?
1658 else {
1659 unreachable!();
1660 };
1661 self.clip_distance_count = size;
1662 writeln!(self.out, "out float gl_ClipDistance[{size}];")?;
1663 }
1664 _ => {}
1665 }
1666 return Ok(());
1667 }
1668 };
1669
1670 // Write the interpolation modifier if needed
1671 //
1672 // We ignore all interpolation and auxiliary modifiers that aren't used in fragment
1673 // shaders' input globals or vertex shaders' output globals.
1674 let emit_interpolation_and_auxiliary = match self.entry_point.stage {
1675 ShaderStage::Vertex => output,
1676 ShaderStage::Fragment => !output,
1677 ShaderStage::Compute => false,
1678 ShaderStage::Task | ShaderStage::Mesh => unreachable!(),
1679 };
1680
1681 // Write the I/O locations, if allowed
1682 let io_location = if self.options.version.supports_explicit_locations()
1683 || !emit_interpolation_and_auxiliary
1684 {
1685 if self.options.version.supports_io_locations() {
1686 if let Some(blend_src) = blend_src {
1687 write!(
1688 self.out,
1689 "layout(location = {location}, index = {blend_src}) "
1690 )?;
1691 } else {
1692 write!(self.out, "layout(location = {location}) ")?;
1693 }
1694 None
1695 } else {
1696 Some(VaryingLocation {
1697 location,
1698 index: blend_src.unwrap_or(0),
1699 })
1700 }
1701 } else {
1702 None
1703 };
1704
1705 // Write the interpolation qualifier.
1706 if let Some(interp) = interpolation {
1707 if emit_interpolation_and_auxiliary {
1708 write!(self.out, "{} ", glsl_interpolation(interp))?;
1709 }
1710 }
1711
1712 // Write the sampling auxiliary qualifier.
1713 //
1714 // Before GLSL 4.2, the `centroid` and `sample` qualifiers were required to appear
1715 // immediately before the `in` / `out` qualifier, so we'll just follow that rule
1716 // here, regardless of the version.
1717 if let Some(sampling) = sampling {
1718 if emit_interpolation_and_auxiliary {
1719 if let Some(qualifier) = glsl_sampling(sampling)? {
1720 write!(self.out, "{qualifier} ")?;
1721 }
1722 }
1723 }
1724
1725 // Write the input/output qualifier.
1726 write!(self.out, "{} ", if output { "out" } else { "in" })?;
1727
1728 // Write the type
1729 // `write_type` adds no leading or trailing spaces
1730 self.write_type(ty)?;
1731
1732 // Finally write the global name and end the global with a `;` and a newline
1733 // Leading space is important
1734 let vname = VaryingName {
1735 binding: &crate::Binding::Location {
1736 location,
1737 interpolation: None,
1738 sampling: None,
1739 blend_src,
1740 per_primitive: false,
1741 },
1742 stage: self.entry_point.stage,
1743 options: VaryingOptions::from_writer_options(self.options, output),
1744 };
1745 writeln!(self.out, " {vname};")?;
1746
1747 if let Some(location) = io_location {
1748 self.varying.insert(vname.to_string(), location);
1749 }
1750
1751 Ok(())
1752 }
1753
1754 /// Helper method used to write functions (both entry points and regular functions)
1755 ///
1756 /// # Notes
1757 /// Adds a newline
1758 fn write_function(
1759 &mut self,
1760 ty: back::FunctionType,
1761 func: &crate::Function,
1762 info: &valid::FunctionInfo,
1763 ) -> BackendResult {
1764 // Create a function context for the function being written
1765 let ctx = back::FunctionCtx {
1766 ty,
1767 info,
1768 expressions: &func.expressions,
1769 named_expressions: &func.named_expressions,
1770 };
1771
1772 self.named_expressions.clear();
1773 self.update_expressions_to_bake(func, info);
1774
1775 // Write the function header
1776 //
1777 // glsl headers are the same as in c:
1778 // `ret_type name(args)`
1779 // `ret_type` is the return type
1780 // `name` is the function name
1781 // `args` is a comma separated list of `type name`
1782 // | - `type` is the argument type
1783 // | - `name` is the argument name
1784
1785 // Start by writing the return type if any otherwise write void
1786 // This is the only place where `void` is a valid type
1787 // (though it's more a keyword than a type)
1788 if let back::FunctionType::EntryPoint(_) = ctx.ty {
1789 write!(self.out, "void")?;
1790 } else if let Some(ref result) = func.result {
1791 self.write_type(result.ty)?;
1792 if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner {
1793 self.write_array_size(base, size)?
1794 }
1795 } else {
1796 write!(self.out, "void")?;
1797 }
1798
1799 // Write the function name and open parentheses for the argument list
1800 let function_name = match ctx.ty {
1801 back::FunctionType::Function(handle) => &self.names[&NameKey::Function(handle)],
1802 back::FunctionType::EntryPoint(_) => "main",
1803 };
1804 write!(self.out, " {function_name}(")?;
1805
1806 // Write the comma separated argument list
1807 //
1808 // We need access to `Self` here so we use the reference passed to the closure as an
1809 // argument instead of capturing as that would cause a borrow checker error
1810 let arguments = match ctx.ty {
1811 back::FunctionType::EntryPoint(_) => &[][..],
1812 back::FunctionType::Function(_) => &func.arguments,
1813 };
1814 let arguments: Vec<_> = arguments
1815 .iter()
1816 .enumerate()
1817 .filter(|&(_, arg)| match self.module.types[arg.ty].inner {
1818 TypeInner::Sampler { .. } => false,
1819 _ => true,
1820 })
1821 .collect();
1822 self.write_slice(&arguments, |this, _, &(i, arg)| {
1823 // Write the argument type
1824 match this.module.types[arg.ty].inner {
1825 // We treat images separately because they might require
1826 // writing the storage format
1827 TypeInner::Image {
1828 dim,
1829 arrayed,
1830 class,
1831 } => {
1832 // Write the storage format if needed
1833 if let TypeInner::Image {
1834 class: crate::ImageClass::Storage { format, .. },
1835 ..
1836 } = this.module.types[arg.ty].inner
1837 {
1838 write!(this.out, "layout({}) ", glsl_storage_format(format)?)?;
1839 }
1840
1841 // write the type
1842 //
1843 // This is way we need the leading space because `write_image_type` doesn't add
1844 // any spaces at the beginning or end
1845 this.write_image_type(dim, arrayed, class)?;
1846 }
1847 TypeInner::Pointer { base, .. } => {
1848 // write parameter qualifiers
1849 write!(this.out, "inout ")?;
1850 this.write_type(base)?;
1851 }
1852 // All other types are written by `write_type`
1853 _ => {
1854 this.write_type(arg.ty)?;
1855 }
1856 }
1857
1858 // Write the argument name
1859 // The leading space is important
1860 write!(this.out, " {}", &this.names[&ctx.argument_key(i as u32)])?;
1861
1862 // Write array size
1863 match this.module.types[arg.ty].inner {
1864 TypeInner::Array { base, size, .. } => {
1865 this.write_array_size(base, size)?;
1866 }
1867 TypeInner::Pointer { base, .. } => {
1868 if let TypeInner::Array { base, size, .. } = this.module.types[base].inner {
1869 this.write_array_size(base, size)?;
1870 }
1871 }
1872 _ => {}
1873 }
1874
1875 Ok(())
1876 })?;
1877
1878 // Close the parentheses and open braces to start the function body
1879 writeln!(self.out, ") {{")?;
1880
1881 if self.options.zero_initialize_workgroup_memory
1882 && ctx.ty.is_compute_like_entry_point(self.module)
1883 {
1884 self.write_workgroup_variables_initialization(&ctx)?;
1885 }
1886
1887 // Compose the function arguments from globals, in case of an entry point.
1888 if let back::FunctionType::EntryPoint(ep_index) = ctx.ty {
1889 let stage = self.module.entry_points[ep_index as usize].stage;
1890 for (index, arg) in func.arguments.iter().enumerate() {
1891 write!(self.out, "{}", back::INDENT)?;
1892 self.write_type(arg.ty)?;
1893 let name = &self.names[&NameKey::EntryPointArgument(ep_index, index as u32)];
1894 write!(self.out, " {name}")?;
1895 write!(self.out, " = ")?;
1896 match self.module.types[arg.ty].inner {
1897 TypeInner::Struct { ref members, .. } => {
1898 self.write_type(arg.ty)?;
1899 write!(self.out, "(")?;
1900 for (index, member) in members.iter().enumerate() {
1901 let varying_name = VaryingName {
1902 binding: member.binding.as_ref().unwrap(),
1903 stage,
1904 options: VaryingOptions::from_writer_options(self.options, false),
1905 };
1906 if index != 0 {
1907 write!(self.out, ", ")?;
1908 }
1909 write!(self.out, "{varying_name}")?;
1910 }
1911 writeln!(self.out, ");")?;
1912 }
1913 _ => {
1914 let varying_name = VaryingName {
1915 binding: arg.binding.as_ref().unwrap(),
1916 stage,
1917 options: VaryingOptions::from_writer_options(self.options, false),
1918 };
1919 writeln!(self.out, "{varying_name};")?;
1920 }
1921 }
1922 }
1923 }
1924
1925 // Write all function locals
1926 // Locals are `type name (= init)?;` where the init part (including the =) are optional
1927 //
1928 // Always adds a newline
1929 for (handle, local) in func.local_variables.iter() {
1930 // Write indentation (only for readability) and the type
1931 // `write_type` adds no trailing space
1932 write!(self.out, "{}", back::INDENT)?;
1933 self.write_type(local.ty)?;
1934
1935 // Write the local name
1936 // The leading space is important
1937 write!(self.out, " {}", self.names[&ctx.name_key(handle)])?;
1938 // Write size for array type
1939 if let TypeInner::Array { base, size, .. } = self.module.types[local.ty].inner {
1940 self.write_array_size(base, size)?;
1941 }
1942 // Write the local initializer if needed
1943 if let Some(init) = local.init {
1944 // Put the equal signal only if there's a initializer
1945 // The leading and trailing spaces aren't needed but help with readability
1946 write!(self.out, " = ")?;
1947
1948 // Write the constant
1949 // `write_constant` adds no trailing or leading space/newline
1950 self.write_expr(init, &ctx)?;
1951 } else if is_value_init_supported(self.module, local.ty) {
1952 write!(self.out, " = ")?;
1953 self.write_zero_init_value(local.ty)?;
1954 }
1955
1956 // Finish the local with `;` and add a newline (only for readability)
1957 writeln!(self.out, ";")?
1958 }
1959
1960 // Write the function body (statement list)
1961 for sta in func.body.iter() {
1962 // Write a statement, the indentation should always be 1 when writing the function body
1963 // `write_stmt` adds a newline
1964 self.write_stmt(sta, &ctx, back::Level(1))?;
1965 }
1966
1967 // Close braces and add a newline
1968 writeln!(self.out, "}}")?;
1969
1970 Ok(())
1971 }
1972
1973 fn write_workgroup_variables_initialization(
1974 &mut self,
1975 ctx: &back::FunctionCtx,
1976 ) -> BackendResult {
1977 let mut vars = self
1978 .module
1979 .global_variables
1980 .iter()
1981 .filter(|&(handle, var)| {
1982 !ctx.info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup
1983 })
1984 .peekable();
1985
1986 if vars.peek().is_some() {
1987 let level = back::Level(1);
1988
1989 writeln!(self.out, "{level}if (gl_LocalInvocationID == uvec3(0u)) {{")?;
1990
1991 for (handle, var) in vars {
1992 let name = &self.names[&NameKey::GlobalVariable(handle)];
1993 write!(self.out, "{}{} = ", level.next(), name)?;
1994 self.write_zero_init_value(var.ty)?;
1995 writeln!(self.out, ";")?;
1996 }
1997
1998 writeln!(self.out, "{level}}}")?;
1999 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
2000 }
2001
2002 Ok(())
2003 }
2004
2005 /// Write a list of comma separated `T` values using a writer function `F`.
2006 ///
2007 /// The writer function `F` receives a mutable reference to `self` that if needed won't cause
2008 /// borrow checker issues (using for example a closure with `self` will cause issues), the
2009 /// second argument is the 0 based index of the element on the list, and the last element is
2010 /// a reference to the element `T` being written
2011 ///
2012 /// # Notes
2013 /// - Adds no newlines or leading/trailing whitespace
2014 /// - The last element won't have a trailing `,`
2015 fn write_slice<T, F: FnMut(&mut Self, u32, &T) -> BackendResult>(
2016 &mut self,
2017 data: &[T],
2018 mut f: F,
2019 ) -> BackendResult {
2020 // Loop through `data` invoking `f` for each element
2021 for (index, item) in data.iter().enumerate() {
2022 if index != 0 {
2023 write!(self.out, ", ")?;
2024 }
2025 f(self, index as u32, item)?;
2026 }
2027
2028 Ok(())
2029 }
2030
2031 /// Helper method used to write global constants
2032 fn write_global_constant(&mut self, handle: Handle<crate::Constant>) -> BackendResult {
2033 write!(self.out, "const ")?;
2034 let constant = &self.module.constants[handle];
2035 self.write_type(constant.ty)?;
2036 let name = &self.names[&NameKey::Constant(handle)];
2037 write!(self.out, " {name}")?;
2038 if let TypeInner::Array { base, size, .. } = self.module.types[constant.ty].inner {
2039 self.write_array_size(base, size)?;
2040 }
2041 write!(self.out, " = ")?;
2042 self.write_const_expr(constant.init, &self.module.global_expressions)?;
2043 writeln!(self.out, ";")?;
2044 Ok(())
2045 }
2046
2047 /// Helper method used to output a dot product as an arithmetic expression
2048 ///
2049 fn write_dot_product(
2050 &mut self,
2051 arg: Handle<crate::Expression>,
2052 arg1: Handle<crate::Expression>,
2053 size: usize,
2054 ctx: &back::FunctionCtx,
2055 ) -> BackendResult {
2056 // Write parentheses around the dot product expression to prevent operators
2057 // with different precedences from applying earlier.
2058 write!(self.out, "(")?;
2059
2060 // Cycle through all the components of the vector
2061 for index in 0..size {
2062 let component = back::COMPONENTS[index];
2063 // Write the addition to the previous product
2064 // This will print an extra '+' at the beginning but that is fine in glsl
2065 write!(self.out, " + ")?;
2066 // Write the first vector expression, this expression is marked to be
2067 // cached so unless it can't be cached (for example, it's a Constant)
2068 // it shouldn't produce large expressions.
2069 self.write_expr(arg, ctx)?;
2070 // Access the current component on the first vector
2071 write!(self.out, ".{component} * ")?;
2072 // Write the second vector expression, this expression is marked to be
2073 // cached so unless it can't be cached (for example, it's a Constant)
2074 // it shouldn't produce large expressions.
2075 self.write_expr(arg1, ctx)?;
2076 // Access the current component on the second vector
2077 write!(self.out, ".{component}")?;
2078 }
2079
2080 write!(self.out, ")")?;
2081 Ok(())
2082 }
2083
2084 /// Helper method used to write structs
2085 ///
2086 /// # Notes
2087 /// Ends in a newline
2088 fn write_struct_body(
2089 &mut self,
2090 handle: Handle<crate::Type>,
2091 members: &[crate::StructMember],
2092 ) -> BackendResult {
2093 // glsl structs are written as in C
2094 // `struct name() { members };`
2095 // | `struct` is a keyword
2096 // | `name` is the struct name
2097 // | `members` is a semicolon separated list of `type name`
2098 // | `type` is the member type
2099 // | `name` is the member name
2100 writeln!(self.out, "{{")?;
2101
2102 for (idx, member) in members.iter().enumerate() {
2103 // The indentation is only for readability
2104 write!(self.out, "{}", back::INDENT)?;
2105
2106 match self.module.types[member.ty].inner {
2107 TypeInner::Array {
2108 base,
2109 size,
2110 stride: _,
2111 } => {
2112 self.write_type(base)?;
2113 write!(
2114 self.out,
2115 " {}",
2116 &self.names[&NameKey::StructMember(handle, idx as u32)]
2117 )?;
2118 // Write [size]
2119 self.write_array_size(base, size)?;
2120 // Newline is important
2121 writeln!(self.out, ";")?;
2122 }
2123 _ => {
2124 // Write the member type
2125 // Adds no trailing space
2126 self.write_type(member.ty)?;
2127
2128 // Write the member name and put a semicolon
2129 // The leading space is important
2130 // All members must have a semicolon even the last one
2131 writeln!(
2132 self.out,
2133 " {};",
2134 &self.names[&NameKey::StructMember(handle, idx as u32)]
2135 )?;
2136 }
2137 }
2138 }
2139
2140 write!(self.out, "}}")?;
2141 Ok(())
2142 }
2143
2144 /// Helper method used to write statements
2145 ///
2146 /// # Notes
2147 /// Always adds a newline
2148 fn write_stmt(
2149 &mut self,
2150 sta: &crate::Statement,
2151 ctx: &back::FunctionCtx,
2152 level: back::Level,
2153 ) -> BackendResult {
2154 use crate::Statement;
2155
2156 match *sta {
2157 // This is where we can generate intermediate constants for some expression types.
2158 Statement::Emit(ref range) => {
2159 for handle in range.clone() {
2160 let ptr_class = ctx.resolve_type(handle, &self.module.types).pointer_space();
2161 let expr_name = if ptr_class.is_some() {
2162 // GLSL can't save a pointer-valued expression in a variable,
2163 // but we shouldn't ever need to: they should never be named expressions,
2164 // and none of the expression types flagged by bake_ref_count can be pointer-valued.
2165 None
2166 } else if let Some(name) = ctx.named_expressions.get(&handle) {
2167 // Front end provides names for all variables at the start of writing.
2168 // But we write them to step by step. We need to recache them
2169 // Otherwise, we could accidentally write variable name instead of full expression.
2170 // Also, we use sanitized names! It defense backend from generating variable with name from reserved keywords.
2171 Some(self.namer.call(name))
2172 } else if self.need_bake_expressions.contains(&handle) {
2173 Some(Baked(handle).to_string())
2174 } else {
2175 None
2176 };
2177
2178 // If we are going to write an `ImageLoad` next and the target image
2179 // is sampled and we are using the `Restrict` policy for bounds
2180 // checking images we need to write a local holding the clamped lod.
2181 if let crate::Expression::ImageLoad {
2182 image,
2183 level: Some(level_expr),
2184 ..
2185 } = ctx.expressions[handle]
2186 {
2187 if let TypeInner::Image {
2188 class: crate::ImageClass::Sampled { .. },
2189 ..
2190 } = *ctx.resolve_type(image, &self.module.types)
2191 {
2192 if let proc::BoundsCheckPolicy::Restrict = self.policies.image_load {
2193 write!(self.out, "{level}")?;
2194 self.write_clamped_lod(ctx, handle, image, level_expr)?
2195 }
2196 }
2197 }
2198
2199 if let Some(name) = expr_name {
2200 write!(self.out, "{level}")?;
2201 self.write_named_expr(handle, name, handle, ctx)?;
2202 }
2203 }
2204 }
2205 // Blocks are simple we just need to write the block statements between braces
2206 // We could also just print the statements but this is more readable and maps more
2207 // closely to the IR
2208 Statement::Block(ref block) => {
2209 write!(self.out, "{level}")?;
2210 writeln!(self.out, "{{")?;
2211 for sta in block.iter() {
2212 // Increase the indentation to help with readability
2213 self.write_stmt(sta, ctx, level.next())?
2214 }
2215 writeln!(self.out, "{level}}}")?
2216 }
2217 // Ifs are written as in C:
2218 // ```
2219 // if(condition) {
2220 // accept
2221 // } else {
2222 // reject
2223 // }
2224 // ```
2225 Statement::If {
2226 condition,
2227 ref accept,
2228 ref reject,
2229 } => {
2230 write!(self.out, "{level}")?;
2231 write!(self.out, "if (")?;
2232 self.write_expr(condition, ctx)?;
2233 writeln!(self.out, ") {{")?;
2234
2235 for sta in accept {
2236 // Increase indentation to help with readability
2237 self.write_stmt(sta, ctx, level.next())?;
2238 }
2239
2240 // If there are no statements in the reject block we skip writing it
2241 // This is only for readability
2242 if !reject.is_empty() {
2243 writeln!(self.out, "{level}}} else {{")?;
2244
2245 for sta in reject {
2246 // Increase indentation to help with readability
2247 self.write_stmt(sta, ctx, level.next())?;
2248 }
2249 }
2250
2251 writeln!(self.out, "{level}}}")?
2252 }
2253 // Switch are written as in C:
2254 // ```
2255 // switch (selector) {
2256 // // Fallthrough
2257 // case label:
2258 // block
2259 // // Non fallthrough
2260 // case label:
2261 // block
2262 // break;
2263 // default:
2264 // block
2265 // }
2266 // ```
2267 // Where the `default` case happens isn't important but we put it last
2268 // so that we don't need to print a `break` for it
2269 Statement::Switch {
2270 selector,
2271 ref cases,
2272 } => {
2273 let l2 = level.next();
2274 // Some GLSL consumers may not handle switches with a single
2275 // body correctly: See wgpu#4514. Write such switch statements
2276 // as a `do {} while(false);` loop instead.
2277 //
2278 // Since doing so may inadvertently capture `continue`
2279 // statements in the switch body, we must apply continue
2280 // forwarding. See the `naga::back::continue_forward` module
2281 // docs for details.
2282 let one_body = cases
2283 .iter()
2284 .rev()
2285 .skip(1)
2286 .all(|case| case.fall_through && case.body.is_empty());
2287 if one_body {
2288 // Unlike HLSL, in GLSL `continue_ctx` only needs to know
2289 // about [`Switch`] statements that are being rendered as
2290 // `do-while` loops.
2291 if let Some(variable) = self.continue_ctx.enter_switch(&mut self.namer) {
2292 writeln!(self.out, "{level}bool {variable} = false;",)?;
2293 };
2294 writeln!(self.out, "{level}do {{")?;
2295 // Note: Expressions have no side-effects so we don't need to emit selector expression.
2296
2297 // Body
2298 if let Some(case) = cases.last() {
2299 for sta in case.body.iter() {
2300 self.write_stmt(sta, ctx, l2)?;
2301 }
2302 }
2303 // End do-while
2304 writeln!(self.out, "{level}}} while(false);")?;
2305
2306 // Handle any forwarded continue statements.
2307 use back::continue_forward::ExitControlFlow;
2308 let op = match self.continue_ctx.exit_switch() {
2309 ExitControlFlow::None => None,
2310 ExitControlFlow::Continue { variable } => Some(("continue", variable)),
2311 ExitControlFlow::Break { variable } => Some(("break", variable)),
2312 };
2313 if let Some((control_flow, variable)) = op {
2314 writeln!(self.out, "{level}if ({variable}) {{")?;
2315 writeln!(self.out, "{l2}{control_flow};")?;
2316 writeln!(self.out, "{level}}}")?;
2317 }
2318 } else {
2319 // Start the switch
2320 write!(self.out, "{level}")?;
2321 write!(self.out, "switch(")?;
2322 self.write_expr(selector, ctx)?;
2323 writeln!(self.out, ") {{")?;
2324
2325 // Write all cases
2326 for case in cases {
2327 match case.value {
2328 crate::SwitchValue::I32(value) => {
2329 write!(self.out, "{l2}case {value}:")?
2330 }
2331 crate::SwitchValue::U32(value) => {
2332 write!(self.out, "{l2}case {value}u:")?
2333 }
2334 crate::SwitchValue::Default => write!(self.out, "{l2}default:")?,
2335 }
2336
2337 let write_block_braces = !(case.fall_through && case.body.is_empty());
2338 if write_block_braces {
2339 writeln!(self.out, " {{")?;
2340 } else {
2341 writeln!(self.out)?;
2342 }
2343
2344 for sta in case.body.iter() {
2345 self.write_stmt(sta, ctx, l2.next())?;
2346 }
2347
2348 if !case.fall_through && case.body.last().is_none_or(|s| !s.is_terminator())
2349 {
2350 writeln!(self.out, "{}break;", l2.next())?;
2351 }
2352
2353 if write_block_braces {
2354 writeln!(self.out, "{l2}}}")?;
2355 }
2356 }
2357
2358 writeln!(self.out, "{level}}}")?
2359 }
2360 }
2361 // Loops in naga IR are based on wgsl loops, glsl can emulate the behaviour by using a
2362 // while true loop and appending the continuing block to the body resulting on:
2363 // ```
2364 // bool loop_init = true;
2365 // while(true) {
2366 // if (!loop_init) { <continuing> }
2367 // loop_init = false;
2368 // <body>
2369 // }
2370 // ```
2371 Statement::Loop {
2372 ref body,
2373 ref continuing,
2374 break_if,
2375 } => {
2376 self.continue_ctx.enter_loop();
2377 if !continuing.is_empty() || break_if.is_some() {
2378 let gate_name = self.namer.call("loop_init");
2379 writeln!(self.out, "{level}bool {gate_name} = true;")?;
2380 writeln!(self.out, "{level}while(true) {{")?;
2381 let l2 = level.next();
2382 let l3 = l2.next();
2383 writeln!(self.out, "{l2}if (!{gate_name}) {{")?;
2384 for sta in continuing {
2385 self.write_stmt(sta, ctx, l3)?;
2386 }
2387 if let Some(condition) = break_if {
2388 write!(self.out, "{l3}if (")?;
2389 self.write_expr(condition, ctx)?;
2390 writeln!(self.out, ") {{")?;
2391 writeln!(self.out, "{}break;", l3.next())?;
2392 writeln!(self.out, "{l3}}}")?;
2393 }
2394 writeln!(self.out, "{l2}}}")?;
2395 writeln!(self.out, "{}{} = false;", level.next(), gate_name)?;
2396 } else {
2397 writeln!(self.out, "{level}while(true) {{")?;
2398 }
2399 for sta in body {
2400 self.write_stmt(sta, ctx, level.next())?;
2401 }
2402 writeln!(self.out, "{level}}}")?;
2403 self.continue_ctx.exit_loop();
2404 }
2405 // Break, continue and return as written as in C
2406 // `break;`
2407 Statement::Break => {
2408 write!(self.out, "{level}")?;
2409 writeln!(self.out, "break;")?
2410 }
2411 // `continue;`
2412 Statement::Continue => {
2413 // Sometimes we must render a `Continue` statement as a `break`.
2414 // See the docs for the `back::continue_forward` module.
2415 if let Some(variable) = self.continue_ctx.continue_encountered() {
2416 writeln!(self.out, "{level}{variable} = true;",)?;
2417 writeln!(self.out, "{level}break;")?
2418 } else {
2419 writeln!(self.out, "{level}continue;")?
2420 }
2421 }
2422 // `return expr;`, `expr` is optional
2423 Statement::Return { value } => {
2424 write!(self.out, "{level}")?;
2425 match ctx.ty {
2426 back::FunctionType::Function(_) => {
2427 write!(self.out, "return")?;
2428 // Write the expression to be returned if needed
2429 if let Some(expr) = value {
2430 write!(self.out, " ")?;
2431 self.write_expr(expr, ctx)?;
2432 }
2433 writeln!(self.out, ";")?;
2434 }
2435 back::FunctionType::EntryPoint(ep_index) => {
2436 let mut has_point_size = false;
2437 let ep = &self.module.entry_points[ep_index as usize];
2438 if let Some(ref result) = ep.function.result {
2439 let value = value.unwrap();
2440 match self.module.types[result.ty].inner {
2441 TypeInner::Struct { ref members, .. } => {
2442 let temp_struct_name = match ctx.expressions[value] {
2443 crate::Expression::Compose { .. } => {
2444 let return_struct = "_tmp_return";
2445 write!(
2446 self.out,
2447 "{} {} = ",
2448 &self.names[&NameKey::Type(result.ty)],
2449 return_struct
2450 )?;
2451 self.write_expr(value, ctx)?;
2452 writeln!(self.out, ";")?;
2453 write!(self.out, "{level}")?;
2454 Some(return_struct)
2455 }
2456 _ => None,
2457 };
2458
2459 for (index, member) in members.iter().enumerate() {
2460 if let Some(crate::Binding::BuiltIn(
2461 crate::BuiltIn::PointSize,
2462 )) = member.binding
2463 {
2464 has_point_size = true;
2465 }
2466
2467 let varying_name = VaryingName {
2468 binding: member.binding.as_ref().unwrap(),
2469 stage: ep.stage,
2470 options: VaryingOptions::from_writer_options(
2471 self.options,
2472 true,
2473 ),
2474 };
2475 write!(self.out, "{varying_name} = ")?;
2476
2477 if let Some(struct_name) = temp_struct_name {
2478 write!(self.out, "{struct_name}")?;
2479 } else {
2480 self.write_expr(value, ctx)?;
2481 }
2482
2483 // Write field name
2484 writeln!(
2485 self.out,
2486 ".{};",
2487 &self.names
2488 [&NameKey::StructMember(result.ty, index as u32)]
2489 )?;
2490 write!(self.out, "{level}")?;
2491 }
2492 }
2493 _ => {
2494 let name = VaryingName {
2495 binding: result.binding.as_ref().unwrap(),
2496 stage: ep.stage,
2497 options: VaryingOptions::from_writer_options(
2498 self.options,
2499 true,
2500 ),
2501 };
2502 write!(self.out, "{name} = ")?;
2503 self.write_expr(value, ctx)?;
2504 writeln!(self.out, ";")?;
2505 write!(self.out, "{level}")?;
2506 }
2507 }
2508 }
2509
2510 let is_vertex_stage = self.module.entry_points[ep_index as usize].stage
2511 == ShaderStage::Vertex;
2512 if is_vertex_stage
2513 && self
2514 .options
2515 .writer_flags
2516 .contains(WriterFlags::ADJUST_COORDINATE_SPACE)
2517 {
2518 writeln!(
2519 self.out,
2520 "gl_Position.yz = vec2(-gl_Position.y, gl_Position.z * 2.0 - gl_Position.w);",
2521 )?;
2522 write!(self.out, "{level}")?;
2523 }
2524
2525 if is_vertex_stage
2526 && self
2527 .options
2528 .writer_flags
2529 .contains(WriterFlags::FORCE_POINT_SIZE)
2530 && !has_point_size
2531 {
2532 writeln!(self.out, "gl_PointSize = 1.0;")?;
2533 write!(self.out, "{level}")?;
2534 }
2535 writeln!(self.out, "return;")?;
2536 }
2537 }
2538 }
2539 // This is one of the places were glsl adds to the syntax of C in this case the discard
2540 // keyword which ceases all further processing in a fragment shader, it's called OpKill
2541 // in spir-v that's why it's called `Statement::Kill`
2542 Statement::Kill => writeln!(self.out, "{level}discard;")?,
2543 Statement::ControlBarrier(flags) => {
2544 self.write_control_barrier(flags, level)?;
2545 }
2546 Statement::MemoryBarrier(flags) => {
2547 self.write_memory_barrier(flags, level)?;
2548 }
2549 // Stores in glsl are just variable assignments written as `pointer = value;`
2550 Statement::Store { pointer, value } => {
2551 write!(self.out, "{level}")?;
2552 self.write_expr(pointer, ctx)?;
2553 write!(self.out, " = ")?;
2554 self.write_expr(value, ctx)?;
2555 writeln!(self.out, ";")?
2556 }
2557 Statement::WorkGroupUniformLoad { pointer, result } => {
2558 // GLSL doesn't have pointers, which means that this backend needs to ensure that
2559 // the actual "loading" is happening between the two barriers.
2560 // This is done in `Emit` by never emitting a variable name for pointer variables
2561 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
2562
2563 let result_name = Baked(result).to_string();
2564 write!(self.out, "{level}")?;
2565 // Expressions cannot have side effects, so just writing the expression here is fine.
2566 self.write_named_expr(pointer, result_name, result, ctx)?;
2567
2568 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
2569 }
2570 // Stores a value into an image.
2571 Statement::ImageStore {
2572 image,
2573 coordinate,
2574 array_index,
2575 value,
2576 } => {
2577 write!(self.out, "{level}")?;
2578 self.write_image_store(ctx, image, coordinate, array_index, value)?
2579 }
2580 // A `Call` is written `name(arguments)` where `arguments` is a comma separated expressions list
2581 Statement::Call {
2582 function,
2583 ref arguments,
2584 result,
2585 } => {
2586 write!(self.out, "{level}")?;
2587 if let Some(expr) = result {
2588 let name = Baked(expr).to_string();
2589 let result = self.module.functions[function].result.as_ref().unwrap();
2590 self.write_type(result.ty)?;
2591 write!(self.out, " {name}")?;
2592 if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner
2593 {
2594 self.write_array_size(base, size)?
2595 }
2596 write!(self.out, " = ")?;
2597 self.named_expressions.insert(expr, name);
2598 }
2599 write!(self.out, "{}(", &self.names[&NameKey::Function(function)])?;
2600 let arguments: Vec<_> = arguments
2601 .iter()
2602 .enumerate()
2603 .filter_map(|(i, arg)| {
2604 let arg_ty = self.module.functions[function].arguments[i].ty;
2605 match self.module.types[arg_ty].inner {
2606 TypeInner::Sampler { .. } => None,
2607 _ => Some(*arg),
2608 }
2609 })
2610 .collect();
2611 self.write_slice(&arguments, |this, _, arg| this.write_expr(*arg, ctx))?;
2612 writeln!(self.out, ");")?
2613 }
2614 Statement::Atomic {
2615 pointer,
2616 ref fun,
2617 value,
2618 result,
2619 } => {
2620 write!(self.out, "{level}")?;
2621
2622 match *fun {
2623 crate::AtomicFunction::Exchange {
2624 compare: Some(compare_expr),
2625 } => {
2626 let result_handle = result.expect("CompareExchange must have a result");
2627 let res_name = Baked(result_handle).to_string();
2628 self.write_type(ctx.info[result_handle].ty.handle().unwrap())?;
2629 write!(self.out, " {res_name};")?;
2630 write!(self.out, " {res_name}.old_value = atomicCompSwap(")?;
2631 self.write_expr(pointer, ctx)?;
2632 write!(self.out, ", ")?;
2633 self.write_expr(compare_expr, ctx)?;
2634 write!(self.out, ", ")?;
2635 self.write_expr(value, ctx)?;
2636 writeln!(self.out, ");")?;
2637
2638 write!(
2639 self.out,
2640 "{level}{res_name}.exchanged = ({res_name}.old_value == "
2641 )?;
2642 self.write_expr(compare_expr, ctx)?;
2643 writeln!(self.out, ");")?;
2644 self.named_expressions.insert(result_handle, res_name);
2645 }
2646 _ => {
2647 if let Some(result) = result {
2648 let res_name = Baked(result).to_string();
2649 self.write_type(ctx.info[result].ty.handle().unwrap())?;
2650 write!(self.out, " {res_name} = ")?;
2651 self.named_expressions.insert(result, res_name);
2652 }
2653 let fun_str = fun.to_glsl();
2654 write!(self.out, "atomic{fun_str}(")?;
2655 self.write_expr(pointer, ctx)?;
2656 write!(self.out, ", ")?;
2657 if let crate::AtomicFunction::Subtract = *fun {
2658 // Emulate `atomicSub` with `atomicAdd` by negating the value.
2659 write!(self.out, "-")?;
2660 }
2661 self.write_expr(value, ctx)?;
2662 writeln!(self.out, ");")?;
2663 }
2664 }
2665 }
2666 // Stores a value into an image.
2667 Statement::ImageAtomic {
2668 image,
2669 coordinate,
2670 array_index,
2671 fun,
2672 value,
2673 } => {
2674 write!(self.out, "{level}")?;
2675 self.write_image_atomic(ctx, image, coordinate, array_index, fun, value)?
2676 }
2677 Statement::RayQuery { .. } => unreachable!(),
2678 Statement::SubgroupBallot { result, predicate } => {
2679 write!(self.out, "{level}")?;
2680 let res_name = Baked(result).to_string();
2681 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2682 self.write_value_type(res_ty)?;
2683 write!(self.out, " {res_name} = ")?;
2684 self.named_expressions.insert(result, res_name);
2685
2686 write!(self.out, "subgroupBallot(")?;
2687 match predicate {
2688 Some(predicate) => self.write_expr(predicate, ctx)?,
2689 None => write!(self.out, "true")?,
2690 }
2691 writeln!(self.out, ");")?;
2692 }
2693 Statement::SubgroupCollectiveOperation {
2694 op,
2695 collective_op,
2696 argument,
2697 result,
2698 } => {
2699 write!(self.out, "{level}")?;
2700 let res_name = Baked(result).to_string();
2701 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2702 self.write_value_type(res_ty)?;
2703 write!(self.out, " {res_name} = ")?;
2704 self.named_expressions.insert(result, res_name);
2705
2706 match (collective_op, op) {
2707 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::All) => {
2708 write!(self.out, "subgroupAll(")?
2709 }
2710 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Any) => {
2711 write!(self.out, "subgroupAny(")?
2712 }
2713 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Add) => {
2714 write!(self.out, "subgroupAdd(")?
2715 }
2716 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Mul) => {
2717 write!(self.out, "subgroupMul(")?
2718 }
2719 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Max) => {
2720 write!(self.out, "subgroupMax(")?
2721 }
2722 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Min) => {
2723 write!(self.out, "subgroupMin(")?
2724 }
2725 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::And) => {
2726 write!(self.out, "subgroupAnd(")?
2727 }
2728 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Or) => {
2729 write!(self.out, "subgroupOr(")?
2730 }
2731 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Xor) => {
2732 write!(self.out, "subgroupXor(")?
2733 }
2734 (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Add) => {
2735 write!(self.out, "subgroupExclusiveAdd(")?
2736 }
2737 (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Mul) => {
2738 write!(self.out, "subgroupExclusiveMul(")?
2739 }
2740 (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Add) => {
2741 write!(self.out, "subgroupInclusiveAdd(")?
2742 }
2743 (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Mul) => {
2744 write!(self.out, "subgroupInclusiveMul(")?
2745 }
2746 _ => unimplemented!(),
2747 }
2748 self.write_expr(argument, ctx)?;
2749 writeln!(self.out, ");")?;
2750 }
2751 Statement::SubgroupGather {
2752 mode,
2753 argument,
2754 result,
2755 } => {
2756 write!(self.out, "{level}")?;
2757 let res_name = Baked(result).to_string();
2758 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2759 self.write_value_type(res_ty)?;
2760 write!(self.out, " {res_name} = ")?;
2761 self.named_expressions.insert(result, res_name);
2762
2763 match mode {
2764 crate::GatherMode::BroadcastFirst => {
2765 write!(self.out, "subgroupBroadcastFirst(")?;
2766 }
2767 crate::GatherMode::Broadcast(_) => {
2768 write!(self.out, "subgroupBroadcast(")?;
2769 }
2770 crate::GatherMode::Shuffle(_) => {
2771 write!(self.out, "subgroupShuffle(")?;
2772 }
2773 crate::GatherMode::ShuffleDown(_) => {
2774 write!(self.out, "subgroupShuffleDown(")?;
2775 }
2776 crate::GatherMode::ShuffleUp(_) => {
2777 write!(self.out, "subgroupShuffleUp(")?;
2778 }
2779 crate::GatherMode::ShuffleXor(_) => {
2780 write!(self.out, "subgroupShuffleXor(")?;
2781 }
2782 crate::GatherMode::QuadBroadcast(_) => {
2783 write!(self.out, "subgroupQuadBroadcast(")?;
2784 }
2785 crate::GatherMode::QuadSwap(direction) => match direction {
2786 crate::Direction::X => {
2787 write!(self.out, "subgroupQuadSwapHorizontal(")?;
2788 }
2789 crate::Direction::Y => {
2790 write!(self.out, "subgroupQuadSwapVertical(")?;
2791 }
2792 crate::Direction::Diagonal => {
2793 write!(self.out, "subgroupQuadSwapDiagonal(")?;
2794 }
2795 },
2796 }
2797 self.write_expr(argument, ctx)?;
2798 match mode {
2799 crate::GatherMode::BroadcastFirst => {}
2800 crate::GatherMode::Broadcast(index)
2801 | crate::GatherMode::Shuffle(index)
2802 | crate::GatherMode::ShuffleDown(index)
2803 | crate::GatherMode::ShuffleUp(index)
2804 | crate::GatherMode::ShuffleXor(index)
2805 | crate::GatherMode::QuadBroadcast(index) => {
2806 write!(self.out, ", ")?;
2807 self.write_expr(index, ctx)?;
2808 }
2809 crate::GatherMode::QuadSwap(_) => {}
2810 }
2811 writeln!(self.out, ");")?;
2812 }
2813 }
2814
2815 Ok(())
2816 }
2817
2818 /// Write a const expression.
2819 ///
2820 /// Write `expr`, a handle to an [`Expression`] in the current [`Module`]'s
2821 /// constant expression arena, as GLSL expression.
2822 ///
2823 /// # Notes
2824 /// Adds no newlines or leading/trailing whitespace
2825 ///
2826 /// [`Expression`]: crate::Expression
2827 /// [`Module`]: crate::Module
2828 fn write_const_expr(
2829 &mut self,
2830 expr: Handle<crate::Expression>,
2831 arena: &crate::Arena<crate::Expression>,
2832 ) -> BackendResult {
2833 self.write_possibly_const_expr(
2834 expr,
2835 arena,
2836 |expr| &self.info[expr],
2837 |writer, expr| writer.write_const_expr(expr, arena),
2838 )
2839 }
2840
2841 /// Write [`Expression`] variants that can occur in both runtime and const expressions.
2842 ///
2843 /// Write `expr`, a handle to an [`Expression`] in the arena `expressions`,
2844 /// as as GLSL expression. This must be one of the [`Expression`] variants
2845 /// that is allowed to occur in constant expressions.
2846 ///
2847 /// Use `write_expression` to write subexpressions.
2848 ///
2849 /// This is the common code for `write_expr`, which handles arbitrary
2850 /// runtime expressions, and `write_const_expr`, which only handles
2851 /// const-expressions. Each of those callers passes itself (essentially) as
2852 /// the `write_expression` callback, so that subexpressions are restricted
2853 /// to the appropriate variants.
2854 ///
2855 /// # Notes
2856 /// Adds no newlines or leading/trailing whitespace
2857 ///
2858 /// [`Expression`]: crate::Expression
2859 fn write_possibly_const_expr<'w, I, E>(
2860 &'w mut self,
2861 expr: Handle<crate::Expression>,
2862 expressions: &crate::Arena<crate::Expression>,
2863 info: I,
2864 write_expression: E,
2865 ) -> BackendResult
2866 where
2867 I: Fn(Handle<crate::Expression>) -> &'w proc::TypeResolution,
2868 E: Fn(&mut Self, Handle<crate::Expression>) -> BackendResult,
2869 {
2870 use crate::Expression;
2871
2872 match expressions[expr] {
2873 Expression::Literal(literal) => {
2874 match literal {
2875 // Floats are written using `Debug` instead of `Display` because it always appends the
2876 // decimal part even it's zero which is needed for a valid glsl float constant
2877 crate::Literal::F64(value) => write!(self.out, "{value:?}LF")?,
2878 crate::Literal::F32(value) => write!(self.out, "{value:?}")?,
2879 crate::Literal::F16(_) => {
2880 return Err(Error::Custom("GLSL has no 16-bit float type".into()));
2881 }
2882 // Unsigned integers need a `u` at the end
2883 //
2884 // While `core` doesn't necessarily need it, it's allowed and since `es` needs it we
2885 // always write it as the extra branch wouldn't have any benefit in readability
2886 crate::Literal::U32(value) => write!(self.out, "{value}u")?,
2887 crate::Literal::I32(value) => write!(self.out, "{value}")?,
2888 crate::Literal::Bool(value) => write!(self.out, "{value}")?,
2889 crate::Literal::I64(_) => {
2890 return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
2891 }
2892 crate::Literal::U64(_) => {
2893 return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
2894 }
2895 crate::Literal::AbstractInt(_) | crate::Literal::AbstractFloat(_) => {
2896 return Err(Error::Custom(
2897 "Abstract types should not appear in IR presented to backends".into(),
2898 ));
2899 }
2900 }
2901 }
2902 Expression::Constant(handle) => {
2903 let constant = &self.module.constants[handle];
2904 if constant.name.is_some() {
2905 write!(self.out, "{}", self.names[&NameKey::Constant(handle)])?;
2906 } else {
2907 self.write_const_expr(constant.init, &self.module.global_expressions)?;
2908 }
2909 }
2910 Expression::ZeroValue(ty) => {
2911 self.write_zero_init_value(ty)?;
2912 }
2913 Expression::Compose { ty, ref components } => {
2914 self.write_type(ty)?;
2915
2916 if let TypeInner::Array { base, size, .. } = self.module.types[ty].inner {
2917 self.write_array_size(base, size)?;
2918 }
2919
2920 write!(self.out, "(")?;
2921 for (index, component) in components.iter().enumerate() {
2922 if index != 0 {
2923 write!(self.out, ", ")?;
2924 }
2925 write_expression(self, *component)?;
2926 }
2927 write!(self.out, ")")?
2928 }
2929 // `Splat` needs to actually write down a vector, it's not always inferred in GLSL.
2930 Expression::Splat { size: _, value } => {
2931 let resolved = info(expr).inner_with(&self.module.types);
2932 self.write_value_type(resolved)?;
2933 write!(self.out, "(")?;
2934 write_expression(self, value)?;
2935 write!(self.out, ")")?
2936 }
2937 _ => {
2938 return Err(Error::Override);
2939 }
2940 }
2941
2942 Ok(())
2943 }
2944
2945 /// Helper method to write expressions
2946 ///
2947 /// # Notes
2948 /// Doesn't add any newlines or leading/trailing spaces
2949 fn write_expr(
2950 &mut self,
2951 expr: Handle<crate::Expression>,
2952 ctx: &back::FunctionCtx,
2953 ) -> BackendResult {
2954 use crate::Expression;
2955
2956 if let Some(name) = self.named_expressions.get(&expr) {
2957 write!(self.out, "{name}")?;
2958 return Ok(());
2959 }
2960
2961 match ctx.expressions[expr] {
2962 Expression::Literal(_)
2963 | Expression::Constant(_)
2964 | Expression::ZeroValue(_)
2965 | Expression::Compose { .. }
2966 | Expression::Splat { .. } => {
2967 self.write_possibly_const_expr(
2968 expr,
2969 ctx.expressions,
2970 |expr| &ctx.info[expr].ty,
2971 |writer, expr| writer.write_expr(expr, ctx),
2972 )?;
2973 }
2974 Expression::Override(_) => return Err(Error::Override),
2975 // `Access` is applied to arrays, vectors and matrices and is written as indexing
2976 Expression::Access { base, index } => {
2977 self.write_expr(base, ctx)?;
2978 write!(self.out, "[")?;
2979 self.write_expr(index, ctx)?;
2980 write!(self.out, "]")?
2981 }
2982 // `AccessIndex` is the same as `Access` except that the index is a constant and it can
2983 // be applied to structs, in this case we need to find the name of the field at that
2984 // index and write `base.field_name`
2985 Expression::AccessIndex { base, index } => {
2986 self.write_expr(base, ctx)?;
2987
2988 let base_ty_res = &ctx.info[base].ty;
2989 let mut resolved = base_ty_res.inner_with(&self.module.types);
2990 let base_ty_handle = match *resolved {
2991 TypeInner::Pointer { base, space: _ } => {
2992 resolved = &self.module.types[base].inner;
2993 Some(base)
2994 }
2995 _ => base_ty_res.handle(),
2996 };
2997
2998 match *resolved {
2999 TypeInner::Vector { .. } => {
3000 // Write vector access as a swizzle
3001 write!(self.out, ".{}", back::COMPONENTS[index as usize])?
3002 }
3003 TypeInner::Matrix { .. }
3004 | TypeInner::Array { .. }
3005 | TypeInner::ValuePointer { .. } => write!(self.out, "[{index}]")?,
3006 TypeInner::Struct { .. } => {
3007 // This will never panic in case the type is a `Struct`, this is not true
3008 // for other types so we can only check while inside this match arm
3009 let ty = base_ty_handle.unwrap();
3010
3011 write!(
3012 self.out,
3013 ".{}",
3014 &self.names[&NameKey::StructMember(ty, index)]
3015 )?
3016 }
3017 ref other => return Err(Error::Custom(format!("Cannot index {other:?}"))),
3018 }
3019 }
3020 // `Swizzle` adds a few letters behind the dot.
3021 Expression::Swizzle {
3022 size,
3023 vector,
3024 pattern,
3025 } => {
3026 self.write_expr(vector, ctx)?;
3027 write!(self.out, ".")?;
3028 for &sc in pattern[..size as usize].iter() {
3029 self.out.write_char(back::COMPONENTS[sc as usize])?;
3030 }
3031 }
3032 // Function arguments are written as the argument name
3033 Expression::FunctionArgument(pos) => {
3034 write!(self.out, "{}", &self.names[&ctx.argument_key(pos)])?
3035 }
3036 // Global variables need some special work for their name but
3037 // `get_global_name` does the work for us
3038 Expression::GlobalVariable(handle) => {
3039 let global = &self.module.global_variables[handle];
3040 self.write_global_name(handle, global)?
3041 }
3042 // A local is written as it's name
3043 Expression::LocalVariable(handle) => {
3044 write!(self.out, "{}", self.names[&ctx.name_key(handle)])?
3045 }
3046 // glsl has no pointers so there's no load operation, just write the pointer expression
3047 Expression::Load { pointer } => self.write_expr(pointer, ctx)?,
3048 // `ImageSample` is a bit complicated compared to the rest of the IR.
3049 //
3050 // First there are three variations depending whether the sample level is explicitly set,
3051 // if it's automatic or it it's bias:
3052 // `texture(image, coordinate)` - Automatic sample level
3053 // `texture(image, coordinate, bias)` - Bias sample level
3054 // `textureLod(image, coordinate, level)` - Zero or Exact sample level
3055 //
3056 // Furthermore if `depth_ref` is some we need to append it to the coordinate vector
3057 Expression::ImageSample {
3058 image,
3059 sampler: _, //TODO?
3060 gather,
3061 coordinate,
3062 array_index,
3063 offset,
3064 level,
3065 depth_ref,
3066 clamp_to_edge: _,
3067 } => {
3068 let (dim, class, arrayed) = match *ctx.resolve_type(image, &self.module.types) {
3069 TypeInner::Image {
3070 dim,
3071 class,
3072 arrayed,
3073 ..
3074 } => (dim, class, arrayed),
3075 _ => unreachable!(),
3076 };
3077 let mut err = None;
3078 if dim == crate::ImageDimension::Cube {
3079 if offset.is_some() {
3080 err = Some("gsamplerCube[Array][Shadow] doesn't support texture sampling with offsets");
3081 }
3082 if arrayed
3083 && matches!(class, crate::ImageClass::Depth { .. })
3084 && matches!(level, crate::SampleLevel::Gradient { .. })
3085 {
3086 err = Some("samplerCubeArrayShadow don't support textureGrad");
3087 }
3088 }
3089 if gather.is_some() && level != crate::SampleLevel::Zero {
3090 err = Some("textureGather doesn't support LOD parameters");
3091 }
3092 if let Some(err) = err {
3093 return Err(Error::Custom(String::from(err)));
3094 }
3095
3096 // `textureLod[Offset]` on `sampler2DArrayShadow` and `samplerCubeShadow` does not exist in GLSL,
3097 // unless `GL_EXT_texture_shadow_lod` is present.
3098 // But if the target LOD is zero, we can emulate that by using `textureGrad[Offset]` with a constant gradient of 0.
3099 let workaround_lod_with_grad = ((dim == crate::ImageDimension::Cube && !arrayed)
3100 || (dim == crate::ImageDimension::D2 && arrayed))
3101 && level == crate::SampleLevel::Zero
3102 && matches!(class, crate::ImageClass::Depth { .. })
3103 && !self.features.contains(Features::TEXTURE_SHADOW_LOD);
3104
3105 // Write the function to be used depending on the sample level
3106 let fun_name = match level {
3107 crate::SampleLevel::Zero if gather.is_some() => "textureGather",
3108 crate::SampleLevel::Zero if workaround_lod_with_grad => "textureGrad",
3109 crate::SampleLevel::Auto | crate::SampleLevel::Bias(_) => "texture",
3110 crate::SampleLevel::Zero | crate::SampleLevel::Exact(_) => "textureLod",
3111 crate::SampleLevel::Gradient { .. } => "textureGrad",
3112 };
3113 let offset_name = match offset {
3114 Some(_) => "Offset",
3115 None => "",
3116 };
3117
3118 write!(self.out, "{fun_name}{offset_name}(")?;
3119
3120 // Write the image that will be used
3121 self.write_expr(image, ctx)?;
3122 // The space here isn't required but it helps with readability
3123 write!(self.out, ", ")?;
3124
3125 // TODO: handle clamp_to_edge
3126 // https://github.com/gfx-rs/wgpu/issues/7791
3127
3128 // We need to get the coordinates vector size to later build a vector that's `size + 1`
3129 // if `depth_ref` is some, if it isn't a vector we panic as that's not a valid expression
3130 let mut coord_dim = match *ctx.resolve_type(coordinate, &self.module.types) {
3131 TypeInner::Vector { size, .. } => size as u8,
3132 TypeInner::Scalar { .. } => 1,
3133 _ => unreachable!(),
3134 };
3135
3136 if array_index.is_some() {
3137 coord_dim += 1;
3138 }
3139 let merge_depth_ref = depth_ref.is_some() && gather.is_none() && coord_dim < 4;
3140 if merge_depth_ref {
3141 coord_dim += 1;
3142 }
3143
3144 let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
3145 let is_vec = tex_1d_hack || coord_dim != 1;
3146 // Compose a new texture coordinates vector
3147 if is_vec {
3148 write!(self.out, "vec{}(", coord_dim + tex_1d_hack as u8)?;
3149 }
3150 self.write_expr(coordinate, ctx)?;
3151 if tex_1d_hack {
3152 write!(self.out, ", 0.0")?;
3153 }
3154 if let Some(expr) = array_index {
3155 write!(self.out, ", ")?;
3156 self.write_expr(expr, ctx)?;
3157 }
3158 if merge_depth_ref {
3159 write!(self.out, ", ")?;
3160 self.write_expr(depth_ref.unwrap(), ctx)?;
3161 }
3162 if is_vec {
3163 write!(self.out, ")")?;
3164 }
3165
3166 if let (Some(expr), false) = (depth_ref, merge_depth_ref) {
3167 write!(self.out, ", ")?;
3168 self.write_expr(expr, ctx)?;
3169 }
3170
3171 match level {
3172 // Auto needs no more arguments
3173 crate::SampleLevel::Auto => (),
3174 // Zero needs level set to 0
3175 crate::SampleLevel::Zero => {
3176 if workaround_lod_with_grad {
3177 let vec_dim = match dim {
3178 crate::ImageDimension::Cube => 3,
3179 _ => 2,
3180 };
3181 write!(self.out, ", vec{vec_dim}(0.0), vec{vec_dim}(0.0)")?;
3182 } else if gather.is_none() {
3183 write!(self.out, ", 0.0")?;
3184 }
3185 }
3186 // Exact and bias require another argument
3187 crate::SampleLevel::Exact(expr) => {
3188 write!(self.out, ", ")?;
3189 self.write_expr(expr, ctx)?;
3190 }
3191 crate::SampleLevel::Bias(_) => {
3192 // This needs to be done after the offset writing
3193 }
3194 crate::SampleLevel::Gradient { x, y } => {
3195 // If we are using sampler2D to replace sampler1D, we also
3196 // need to make sure to use vec2 gradients
3197 if tex_1d_hack {
3198 write!(self.out, ", vec2(")?;
3199 self.write_expr(x, ctx)?;
3200 write!(self.out, ", 0.0)")?;
3201 write!(self.out, ", vec2(")?;
3202 self.write_expr(y, ctx)?;
3203 write!(self.out, ", 0.0)")?;
3204 } else {
3205 write!(self.out, ", ")?;
3206 self.write_expr(x, ctx)?;
3207 write!(self.out, ", ")?;
3208 self.write_expr(y, ctx)?;
3209 }
3210 }
3211 }
3212
3213 if let Some(constant) = offset {
3214 write!(self.out, ", ")?;
3215 if tex_1d_hack {
3216 write!(self.out, "ivec2(")?;
3217 }
3218 self.write_const_expr(constant, ctx.expressions)?;
3219 if tex_1d_hack {
3220 write!(self.out, ", 0)")?;
3221 }
3222 }
3223
3224 // Bias is always the last argument
3225 if let crate::SampleLevel::Bias(expr) = level {
3226 write!(self.out, ", ")?;
3227 self.write_expr(expr, ctx)?;
3228 }
3229
3230 if let (Some(component), None) = (gather, depth_ref) {
3231 write!(self.out, ", {}", component as usize)?;
3232 }
3233
3234 // End the function
3235 write!(self.out, ")")?
3236 }
3237 Expression::ImageLoad {
3238 image,
3239 coordinate,
3240 array_index,
3241 sample,
3242 level,
3243 } => self.write_image_load(expr, ctx, image, coordinate, array_index, sample, level)?,
3244 // Query translates into one of the:
3245 // - textureSize/imageSize
3246 // - textureQueryLevels
3247 // - textureSamples/imageSamples
3248 Expression::ImageQuery { image, query } => {
3249 use crate::ImageClass;
3250
3251 // This will only panic if the module is invalid
3252 let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
3253 TypeInner::Image {
3254 dim,
3255 arrayed: _,
3256 class,
3257 } => (dim, class),
3258 _ => unreachable!(),
3259 };
3260 let components = match dim {
3261 crate::ImageDimension::D1 => 1,
3262 crate::ImageDimension::D2 => 2,
3263 crate::ImageDimension::D3 => 3,
3264 crate::ImageDimension::Cube => 2,
3265 };
3266
3267 if let crate::ImageQuery::Size { .. } = query {
3268 match components {
3269 1 => write!(self.out, "uint(")?,
3270 _ => write!(self.out, "uvec{components}(")?,
3271 }
3272 } else {
3273 write!(self.out, "uint(")?;
3274 }
3275
3276 match query {
3277 crate::ImageQuery::Size { level } => {
3278 match class {
3279 ImageClass::Sampled { multi, .. } | ImageClass::Depth { multi } => {
3280 write!(self.out, "textureSize(")?;
3281 self.write_expr(image, ctx)?;
3282 if let Some(expr) = level {
3283 let cast_to_int = matches!(
3284 *ctx.resolve_type(expr, &self.module.types),
3285 TypeInner::Scalar(crate::Scalar {
3286 kind: crate::ScalarKind::Uint,
3287 ..
3288 })
3289 );
3290
3291 write!(self.out, ", ")?;
3292
3293 if cast_to_int {
3294 write!(self.out, "int(")?;
3295 }
3296
3297 self.write_expr(expr, ctx)?;
3298
3299 if cast_to_int {
3300 write!(self.out, ")")?;
3301 }
3302 } else if !multi {
3303 // All textureSize calls requires an lod argument
3304 // except for multisampled samplers
3305 write!(self.out, ", 0")?;
3306 }
3307 }
3308 ImageClass::Storage { .. } => {
3309 write!(self.out, "imageSize(")?;
3310 self.write_expr(image, ctx)?;
3311 }
3312 ImageClass::External => unimplemented!(),
3313 }
3314 write!(self.out, ")")?;
3315 if components != 1 || self.options.version.is_es() {
3316 write!(self.out, ".{}", &"xyz"[..components])?;
3317 }
3318 }
3319 crate::ImageQuery::NumLevels => {
3320 write!(self.out, "textureQueryLevels(",)?;
3321 self.write_expr(image, ctx)?;
3322 write!(self.out, ")",)?;
3323 }
3324 crate::ImageQuery::NumLayers => {
3325 let fun_name = match class {
3326 ImageClass::Sampled { .. } | ImageClass::Depth { .. } => "textureSize",
3327 ImageClass::Storage { .. } => "imageSize",
3328 ImageClass::External => unimplemented!(),
3329 };
3330 write!(self.out, "{fun_name}(")?;
3331 self.write_expr(image, ctx)?;
3332 // All textureSize calls requires an lod argument
3333 // except for multisampled samplers
3334 if !class.is_multisampled() {
3335 write!(self.out, ", 0")?;
3336 }
3337 write!(self.out, ")")?;
3338 if components != 1 || self.options.version.is_es() {
3339 write!(self.out, ".{}", back::COMPONENTS[components])?;
3340 }
3341 }
3342 crate::ImageQuery::NumSamples => {
3343 let fun_name = match class {
3344 ImageClass::Sampled { .. } | ImageClass::Depth { .. } => {
3345 "textureSamples"
3346 }
3347 ImageClass::Storage { .. } => "imageSamples",
3348 ImageClass::External => unimplemented!(),
3349 };
3350 write!(self.out, "{fun_name}(")?;
3351 self.write_expr(image, ctx)?;
3352 write!(self.out, ")",)?;
3353 }
3354 }
3355
3356 write!(self.out, ")")?;
3357 }
3358 Expression::Unary { op, expr } => {
3359 let operator_or_fn = match op {
3360 crate::UnaryOperator::Negate => "-",
3361 crate::UnaryOperator::LogicalNot => {
3362 match *ctx.resolve_type(expr, &self.module.types) {
3363 TypeInner::Vector { .. } => "not",
3364 _ => "!",
3365 }
3366 }
3367 crate::UnaryOperator::BitwiseNot => "~",
3368 };
3369 write!(self.out, "{operator_or_fn}(")?;
3370
3371 self.write_expr(expr, ctx)?;
3372
3373 write!(self.out, ")")?
3374 }
3375 // `Binary` we just write `left op right`, except when dealing with
3376 // comparison operations on vectors as they are implemented with
3377 // builtin functions.
3378 // Once again we wrap everything in parentheses to avoid precedence issues
3379 Expression::Binary {
3380 mut op,
3381 left,
3382 right,
3383 } => {
3384 // Holds `Some(function_name)` if the binary operation is
3385 // implemented as a function call
3386 use crate::{BinaryOperator as Bo, ScalarKind as Sk, TypeInner as Ti};
3387
3388 let left_inner = ctx.resolve_type(left, &self.module.types);
3389 let right_inner = ctx.resolve_type(right, &self.module.types);
3390
3391 let function = match (left_inner, right_inner) {
3392 (&Ti::Vector { scalar, .. }, &Ti::Vector { .. }) => match op {
3393 Bo::Less
3394 | Bo::LessEqual
3395 | Bo::Greater
3396 | Bo::GreaterEqual
3397 | Bo::Equal
3398 | Bo::NotEqual => BinaryOperation::VectorCompare,
3399 Bo::Modulo if scalar.kind == Sk::Float => BinaryOperation::Modulo,
3400 Bo::And if scalar.kind == Sk::Bool => {
3401 op = crate::BinaryOperator::LogicalAnd;
3402 BinaryOperation::VectorComponentWise
3403 }
3404 Bo::InclusiveOr if scalar.kind == Sk::Bool => {
3405 op = crate::BinaryOperator::LogicalOr;
3406 BinaryOperation::VectorComponentWise
3407 }
3408 _ => BinaryOperation::Other,
3409 },
3410 _ => match (left_inner.scalar_kind(), right_inner.scalar_kind()) {
3411 (Some(Sk::Float), _) | (_, Some(Sk::Float)) => match op {
3412 Bo::Modulo => BinaryOperation::Modulo,
3413 _ => BinaryOperation::Other,
3414 },
3415 (Some(Sk::Bool), Some(Sk::Bool)) => match op {
3416 Bo::InclusiveOr => {
3417 op = crate::BinaryOperator::LogicalOr;
3418 BinaryOperation::Other
3419 }
3420 Bo::And => {
3421 op = crate::BinaryOperator::LogicalAnd;
3422 BinaryOperation::Other
3423 }
3424 _ => BinaryOperation::Other,
3425 },
3426 _ => BinaryOperation::Other,
3427 },
3428 };
3429
3430 match function {
3431 BinaryOperation::VectorCompare => {
3432 let op_str = match op {
3433 Bo::Less => "lessThan(",
3434 Bo::LessEqual => "lessThanEqual(",
3435 Bo::Greater => "greaterThan(",
3436 Bo::GreaterEqual => "greaterThanEqual(",
3437 Bo::Equal => "equal(",
3438 Bo::NotEqual => "notEqual(",
3439 _ => unreachable!(),
3440 };
3441 write!(self.out, "{op_str}")?;
3442 self.write_expr(left, ctx)?;
3443 write!(self.out, ", ")?;
3444 self.write_expr(right, ctx)?;
3445 write!(self.out, ")")?;
3446 }
3447 BinaryOperation::VectorComponentWise => {
3448 self.write_value_type(left_inner)?;
3449 write!(self.out, "(")?;
3450
3451 let size = match *left_inner {
3452 Ti::Vector { size, .. } => size,
3453 _ => unreachable!(),
3454 };
3455
3456 for i in 0..size as usize {
3457 if i != 0 {
3458 write!(self.out, ", ")?;
3459 }
3460
3461 self.write_expr(left, ctx)?;
3462 write!(self.out, ".{}", back::COMPONENTS[i])?;
3463
3464 write!(self.out, " {} ", back::binary_operation_str(op))?;
3465
3466 self.write_expr(right, ctx)?;
3467 write!(self.out, ".{}", back::COMPONENTS[i])?;
3468 }
3469
3470 write!(self.out, ")")?;
3471 }
3472 // TODO: handle undefined behavior of BinaryOperator::Modulo
3473 //
3474 // sint:
3475 // if right == 0 return 0
3476 // if left == min(type_of(left)) && right == -1 return 0
3477 // if sign(left) == -1 || sign(right) == -1 return result as defined by WGSL
3478 //
3479 // uint:
3480 // if right == 0 return 0
3481 //
3482 // float:
3483 // if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798
3484 BinaryOperation::Modulo => {
3485 write!(self.out, "(")?;
3486
3487 // write `e1 - e2 * trunc(e1 / e2)`
3488 self.write_expr(left, ctx)?;
3489 write!(self.out, " - ")?;
3490 self.write_expr(right, ctx)?;
3491 write!(self.out, " * ")?;
3492 write!(self.out, "trunc(")?;
3493 self.write_expr(left, ctx)?;
3494 write!(self.out, " / ")?;
3495 self.write_expr(right, ctx)?;
3496 write!(self.out, ")")?;
3497
3498 write!(self.out, ")")?;
3499 }
3500 BinaryOperation::Other => {
3501 write!(self.out, "(")?;
3502
3503 self.write_expr(left, ctx)?;
3504 write!(self.out, " {} ", back::binary_operation_str(op))?;
3505 self.write_expr(right, ctx)?;
3506
3507 write!(self.out, ")")?;
3508 }
3509 }
3510 }
3511 // `Select` is written as `condition ? accept : reject`
3512 // We wrap everything in parentheses to avoid precedence issues
3513 Expression::Select {
3514 condition,
3515 accept,
3516 reject,
3517 } => {
3518 let cond_ty = ctx.resolve_type(condition, &self.module.types);
3519 let vec_select = if let TypeInner::Vector { .. } = *cond_ty {
3520 true
3521 } else {
3522 false
3523 };
3524
3525 // TODO: Boolean mix on desktop required GL_EXT_shader_integer_mix
3526 if vec_select {
3527 // Glsl defines that for mix when the condition is a boolean the first element
3528 // is picked if condition is false and the second if condition is true
3529 write!(self.out, "mix(")?;
3530 self.write_expr(reject, ctx)?;
3531 write!(self.out, ", ")?;
3532 self.write_expr(accept, ctx)?;
3533 write!(self.out, ", ")?;
3534 self.write_expr(condition, ctx)?;
3535 } else {
3536 write!(self.out, "(")?;
3537 self.write_expr(condition, ctx)?;
3538 write!(self.out, " ? ")?;
3539 self.write_expr(accept, ctx)?;
3540 write!(self.out, " : ")?;
3541 self.write_expr(reject, ctx)?;
3542 }
3543
3544 write!(self.out, ")")?
3545 }
3546 // `Derivative` is a function call to a glsl provided function
3547 Expression::Derivative { axis, ctrl, expr } => {
3548 use crate::{DerivativeAxis as Axis, DerivativeControl as Ctrl};
3549 let fun_name = if self.options.version.supports_derivative_control() {
3550 match (axis, ctrl) {
3551 (Axis::X, Ctrl::Coarse) => "dFdxCoarse",
3552 (Axis::X, Ctrl::Fine) => "dFdxFine",
3553 (Axis::X, Ctrl::None) => "dFdx",
3554 (Axis::Y, Ctrl::Coarse) => "dFdyCoarse",
3555 (Axis::Y, Ctrl::Fine) => "dFdyFine",
3556 (Axis::Y, Ctrl::None) => "dFdy",
3557 (Axis::Width, Ctrl::Coarse) => "fwidthCoarse",
3558 (Axis::Width, Ctrl::Fine) => "fwidthFine",
3559 (Axis::Width, Ctrl::None) => "fwidth",
3560 }
3561 } else {
3562 match axis {
3563 Axis::X => "dFdx",
3564 Axis::Y => "dFdy",
3565 Axis::Width => "fwidth",
3566 }
3567 };
3568 write!(self.out, "{fun_name}(")?;
3569 self.write_expr(expr, ctx)?;
3570 write!(self.out, ")")?
3571 }
3572 // `Relational` is a normal function call to some glsl provided functions
3573 Expression::Relational { fun, argument } => {
3574 use crate::RelationalFunction as Rf;
3575
3576 let fun_name = match fun {
3577 Rf::IsInf => "isinf",
3578 Rf::IsNan => "isnan",
3579 Rf::All => "all",
3580 Rf::Any => "any",
3581 };
3582 write!(self.out, "{fun_name}(")?;
3583
3584 self.write_expr(argument, ctx)?;
3585
3586 write!(self.out, ")")?
3587 }
3588 Expression::Math {
3589 fun,
3590 arg,
3591 arg1,
3592 arg2,
3593 arg3,
3594 } => {
3595 use crate::MathFunction as Mf;
3596
3597 let fun_name = match fun {
3598 // comparison
3599 Mf::Abs => "abs",
3600 Mf::Min => "min",
3601 Mf::Max => "max",
3602 Mf::Clamp => {
3603 let scalar_kind = ctx
3604 .resolve_type(arg, &self.module.types)
3605 .scalar_kind()
3606 .unwrap();
3607 match scalar_kind {
3608 crate::ScalarKind::Float => "clamp",
3609 // Clamp is undefined if min > max. In practice this means it can use a median-of-three
3610 // instruction to determine the value. This is fine according to the WGSL spec for float
3611 // clamp, but integer clamp _must_ use min-max. As such we write out min/max.
3612 _ => {
3613 write!(self.out, "min(max(")?;
3614 self.write_expr(arg, ctx)?;
3615 write!(self.out, ", ")?;
3616 self.write_expr(arg1.unwrap(), ctx)?;
3617 write!(self.out, "), ")?;
3618 self.write_expr(arg2.unwrap(), ctx)?;
3619 write!(self.out, ")")?;
3620
3621 return Ok(());
3622 }
3623 }
3624 }
3625 Mf::Saturate => {
3626 write!(self.out, "clamp(")?;
3627
3628 self.write_expr(arg, ctx)?;
3629
3630 match *ctx.resolve_type(arg, &self.module.types) {
3631 TypeInner::Vector { size, .. } => write!(
3632 self.out,
3633 ", vec{}(0.0), vec{0}(1.0)",
3634 common::vector_size_str(size)
3635 )?,
3636 _ => write!(self.out, ", 0.0, 1.0")?,
3637 }
3638
3639 write!(self.out, ")")?;
3640
3641 return Ok(());
3642 }
3643 // trigonometry
3644 Mf::Cos => "cos",
3645 Mf::Cosh => "cosh",
3646 Mf::Sin => "sin",
3647 Mf::Sinh => "sinh",
3648 Mf::Tan => "tan",
3649 Mf::Tanh => "tanh",
3650 Mf::Acos => "acos",
3651 Mf::Asin => "asin",
3652 Mf::Atan => "atan",
3653 Mf::Asinh => "asinh",
3654 Mf::Acosh => "acosh",
3655 Mf::Atanh => "atanh",
3656 Mf::Radians => "radians",
3657 Mf::Degrees => "degrees",
3658 // glsl doesn't have atan2 function
3659 // use two-argument variation of the atan function
3660 Mf::Atan2 => "atan",
3661 // decomposition
3662 Mf::Ceil => "ceil",
3663 Mf::Floor => "floor",
3664 Mf::Round => "roundEven",
3665 Mf::Fract => "fract",
3666 Mf::Trunc => "trunc",
3667 Mf::Modf => MODF_FUNCTION,
3668 Mf::Frexp => FREXP_FUNCTION,
3669 Mf::Ldexp => "ldexp",
3670 // exponent
3671 Mf::Exp => "exp",
3672 Mf::Exp2 => "exp2",
3673 Mf::Log => "log",
3674 Mf::Log2 => "log2",
3675 Mf::Pow => "pow",
3676 // geometry
3677 Mf::Dot => match *ctx.resolve_type(arg, &self.module.types) {
3678 TypeInner::Vector {
3679 scalar:
3680 crate::Scalar {
3681 kind: crate::ScalarKind::Float,
3682 ..
3683 },
3684 ..
3685 } => "dot",
3686 TypeInner::Vector { size, .. } => {
3687 return self.write_dot_product(arg, arg1.unwrap(), size as usize, ctx)
3688 }
3689 _ => unreachable!(
3690 "Correct TypeInner for dot product should be already validated"
3691 ),
3692 },
3693 fun @ (Mf::Dot4I8Packed | Mf::Dot4U8Packed) => {
3694 let conversion = match fun {
3695 Mf::Dot4I8Packed => "int",
3696 Mf::Dot4U8Packed => "",
3697 _ => unreachable!(),
3698 };
3699
3700 let arg1 = arg1.unwrap();
3701
3702 // Write parentheses around the dot product expression to prevent operators
3703 // with different precedences from applying earlier.
3704 write!(self.out, "(")?;
3705 for i in 0..4 {
3706 // Since `bitfieldExtract` only sign extends if the value is signed, we
3707 // need to convert the inputs to `int` in case of `Dot4I8Packed`. For
3708 // `Dot4U8Packed`, the code below only introduces parenthesis around
3709 // each factor, which aren't strictly needed because both operands are
3710 // baked, but which don't hurt either.
3711 write!(self.out, "bitfieldExtract({conversion}(")?;
3712 self.write_expr(arg, ctx)?;
3713 write!(self.out, "), {}, 8)", i * 8)?;
3714
3715 write!(self.out, " * bitfieldExtract({conversion}(")?;
3716 self.write_expr(arg1, ctx)?;
3717 write!(self.out, "), {}, 8)", i * 8)?;
3718
3719 if i != 3 {
3720 write!(self.out, " + ")?;
3721 }
3722 }
3723 write!(self.out, ")")?;
3724
3725 return Ok(());
3726 }
3727 Mf::Outer => "outerProduct",
3728 Mf::Cross => "cross",
3729 Mf::Distance => "distance",
3730 Mf::Length => "length",
3731 Mf::Normalize => "normalize",
3732 Mf::FaceForward => "faceforward",
3733 Mf::Reflect => "reflect",
3734 Mf::Refract => "refract",
3735 // computational
3736 Mf::Sign => "sign",
3737 Mf::Fma => {
3738 if self.options.version.supports_fma_function() {
3739 // Use the fma function when available
3740 "fma"
3741 } else {
3742 // No fma support. Transform the function call into an arithmetic expression
3743 write!(self.out, "(")?;
3744
3745 self.write_expr(arg, ctx)?;
3746 write!(self.out, " * ")?;
3747
3748 let arg1 =
3749 arg1.ok_or_else(|| Error::Custom("Missing fma arg1".to_owned()))?;
3750 self.write_expr(arg1, ctx)?;
3751 write!(self.out, " + ")?;
3752
3753 let arg2 =
3754 arg2.ok_or_else(|| Error::Custom("Missing fma arg2".to_owned()))?;
3755 self.write_expr(arg2, ctx)?;
3756 write!(self.out, ")")?;
3757
3758 return Ok(());
3759 }
3760 }
3761 Mf::Mix => "mix",
3762 Mf::Step => "step",
3763 Mf::SmoothStep => "smoothstep",
3764 Mf::Sqrt => "sqrt",
3765 Mf::InverseSqrt => "inversesqrt",
3766 Mf::Inverse => "inverse",
3767 Mf::Transpose => "transpose",
3768 Mf::Determinant => "determinant",
3769 Mf::QuantizeToF16 => match *ctx.resolve_type(arg, &self.module.types) {
3770 TypeInner::Scalar { .. } => {
3771 write!(self.out, "unpackHalf2x16(packHalf2x16(vec2(")?;
3772 self.write_expr(arg, ctx)?;
3773 write!(self.out, "))).x")?;
3774 return Ok(());
3775 }
3776 TypeInner::Vector {
3777 size: crate::VectorSize::Bi,
3778 ..
3779 } => {
3780 write!(self.out, "unpackHalf2x16(packHalf2x16(")?;
3781 self.write_expr(arg, ctx)?;
3782 write!(self.out, "))")?;
3783 return Ok(());
3784 }
3785 TypeInner::Vector {
3786 size: crate::VectorSize::Tri,
3787 ..
3788 } => {
3789 write!(self.out, "vec3(unpackHalf2x16(packHalf2x16(")?;
3790 self.write_expr(arg, ctx)?;
3791 write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
3792 self.write_expr(arg, ctx)?;
3793 write!(self.out, ".zz)).x)")?;
3794 return Ok(());
3795 }
3796 TypeInner::Vector {
3797 size: crate::VectorSize::Quad,
3798 ..
3799 } => {
3800 write!(self.out, "vec4(unpackHalf2x16(packHalf2x16(")?;
3801 self.write_expr(arg, ctx)?;
3802 write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
3803 self.write_expr(arg, ctx)?;
3804 write!(self.out, ".zw)))")?;
3805 return Ok(());
3806 }
3807 _ => unreachable!(
3808 "Correct TypeInner for QuantizeToF16 should be already validated"
3809 ),
3810 },
3811 // bits
3812 Mf::CountTrailingZeros => {
3813 match *ctx.resolve_type(arg, &self.module.types) {
3814 TypeInner::Vector { size, scalar, .. } => {
3815 let s = common::vector_size_str(size);
3816 if let crate::ScalarKind::Uint = scalar.kind {
3817 write!(self.out, "min(uvec{s}(findLSB(")?;
3818 self.write_expr(arg, ctx)?;
3819 write!(self.out, ")), uvec{s}(32u))")?;
3820 } else {
3821 write!(self.out, "ivec{s}(min(uvec{s}(findLSB(")?;
3822 self.write_expr(arg, ctx)?;
3823 write!(self.out, ")), uvec{s}(32u)))")?;
3824 }
3825 }
3826 TypeInner::Scalar(scalar) => {
3827 if let crate::ScalarKind::Uint = scalar.kind {
3828 write!(self.out, "min(uint(findLSB(")?;
3829 self.write_expr(arg, ctx)?;
3830 write!(self.out, ")), 32u)")?;
3831 } else {
3832 write!(self.out, "int(min(uint(findLSB(")?;
3833 self.write_expr(arg, ctx)?;
3834 write!(self.out, ")), 32u))")?;
3835 }
3836 }
3837 _ => unreachable!(),
3838 };
3839 return Ok(());
3840 }
3841 Mf::CountLeadingZeros => {
3842 if self.options.version.supports_integer_functions() {
3843 match *ctx.resolve_type(arg, &self.module.types) {
3844 TypeInner::Vector { size, scalar } => {
3845 let s = common::vector_size_str(size);
3846
3847 if let crate::ScalarKind::Uint = scalar.kind {
3848 write!(self.out, "uvec{s}(ivec{s}(31) - findMSB(")?;
3849 self.write_expr(arg, ctx)?;
3850 write!(self.out, "))")?;
3851 } else {
3852 write!(self.out, "mix(ivec{s}(31) - findMSB(")?;
3853 self.write_expr(arg, ctx)?;
3854 write!(self.out, "), ivec{s}(0), lessThan(")?;
3855 self.write_expr(arg, ctx)?;
3856 write!(self.out, ", ivec{s}(0)))")?;
3857 }
3858 }
3859 TypeInner::Scalar(scalar) => {
3860 if let crate::ScalarKind::Uint = scalar.kind {
3861 write!(self.out, "uint(31 - findMSB(")?;
3862 } else {
3863 write!(self.out, "(")?;
3864 self.write_expr(arg, ctx)?;
3865 write!(self.out, " < 0 ? 0 : 31 - findMSB(")?;
3866 }
3867
3868 self.write_expr(arg, ctx)?;
3869 write!(self.out, "))")?;
3870 }
3871 _ => unreachable!(),
3872 };
3873 } else {
3874 match *ctx.resolve_type(arg, &self.module.types) {
3875 TypeInner::Vector { size, scalar } => {
3876 let s = common::vector_size_str(size);
3877
3878 if let crate::ScalarKind::Uint = scalar.kind {
3879 write!(self.out, "uvec{s}(")?;
3880 write!(self.out, "vec{s}(31.0) - floor(log2(vec{s}(")?;
3881 self.write_expr(arg, ctx)?;
3882 write!(self.out, ") + 0.5)))")?;
3883 } else {
3884 write!(self.out, "ivec{s}(")?;
3885 write!(self.out, "mix(vec{s}(31.0) - floor(log2(vec{s}(")?;
3886 self.write_expr(arg, ctx)?;
3887 write!(self.out, ") + 0.5)), ")?;
3888 write!(self.out, "vec{s}(0.0), lessThan(")?;
3889 self.write_expr(arg, ctx)?;
3890 write!(self.out, ", ivec{s}(0u))))")?;
3891 }
3892 }
3893 TypeInner::Scalar(scalar) => {
3894 if let crate::ScalarKind::Uint = scalar.kind {
3895 write!(self.out, "uint(31.0 - floor(log2(float(")?;
3896 self.write_expr(arg, ctx)?;
3897 write!(self.out, ") + 0.5)))")?;
3898 } else {
3899 write!(self.out, "(")?;
3900 self.write_expr(arg, ctx)?;
3901 write!(self.out, " < 0 ? 0 : int(")?;
3902 write!(self.out, "31.0 - floor(log2(float(")?;
3903 self.write_expr(arg, ctx)?;
3904 write!(self.out, ") + 0.5))))")?;
3905 }
3906 }
3907 _ => unreachable!(),
3908 };
3909 }
3910
3911 return Ok(());
3912 }
3913 Mf::CountOneBits => "bitCount",
3914 Mf::ReverseBits => "bitfieldReverse",
3915 Mf::ExtractBits => {
3916 // The behavior of ExtractBits is undefined when offset + count > bit_width. We need
3917 // to first sanitize the offset and count first. If we don't do this, AMD and Intel chips
3918 // will return out-of-spec values if the extracted range is not within the bit width.
3919 //
3920 // This encodes the exact formula specified by the wgsl spec, without temporary values:
3921 // https://gpuweb.github.io/gpuweb/wgsl/#extractBits-unsigned-builtin
3922 //
3923 // w = sizeof(x) * 8
3924 // o = min(offset, w)
3925 // c = min(count, w - o)
3926 //
3927 // bitfieldExtract(x, o, c)
3928 //
3929 // extract_bits(e, min(offset, w), min(count, w - min(offset, w))))
3930 let scalar_bits = ctx
3931 .resolve_type(arg, &self.module.types)
3932 .scalar_width()
3933 .unwrap()
3934 * 8;
3935
3936 write!(self.out, "bitfieldExtract(")?;
3937 self.write_expr(arg, ctx)?;
3938 write!(self.out, ", int(min(")?;
3939 self.write_expr(arg1.unwrap(), ctx)?;
3940 write!(self.out, ", {scalar_bits}u)), int(min(",)?;
3941 self.write_expr(arg2.unwrap(), ctx)?;
3942 write!(self.out, ", {scalar_bits}u - min(")?;
3943 self.write_expr(arg1.unwrap(), ctx)?;
3944 write!(self.out, ", {scalar_bits}u))))")?;
3945
3946 return Ok(());
3947 }
3948 Mf::InsertBits => {
3949 // InsertBits has the same considerations as ExtractBits above
3950 let scalar_bits = ctx
3951 .resolve_type(arg, &self.module.types)
3952 .scalar_width()
3953 .unwrap()
3954 * 8;
3955
3956 write!(self.out, "bitfieldInsert(")?;
3957 self.write_expr(arg, ctx)?;
3958 write!(self.out, ", ")?;
3959 self.write_expr(arg1.unwrap(), ctx)?;
3960 write!(self.out, ", int(min(")?;
3961 self.write_expr(arg2.unwrap(), ctx)?;
3962 write!(self.out, ", {scalar_bits}u)), int(min(",)?;
3963 self.write_expr(arg3.unwrap(), ctx)?;
3964 write!(self.out, ", {scalar_bits}u - min(")?;
3965 self.write_expr(arg2.unwrap(), ctx)?;
3966 write!(self.out, ", {scalar_bits}u))))")?;
3967
3968 return Ok(());
3969 }
3970 Mf::FirstTrailingBit => "findLSB",
3971 Mf::FirstLeadingBit => "findMSB",
3972 // data packing
3973 Mf::Pack4x8snorm => {
3974 if self.options.version.supports_pack_unpack_4x8() {
3975 "packSnorm4x8"
3976 } else {
3977 // polyfill should go here. Needs a corresponding entry in `need_bake_expression`
3978 return Err(Error::UnsupportedExternal("packSnorm4x8".into()));
3979 }
3980 }
3981 Mf::Pack4x8unorm => {
3982 if self.options.version.supports_pack_unpack_4x8() {
3983 "packUnorm4x8"
3984 } else {
3985 return Err(Error::UnsupportedExternal("packUnorm4x8".to_owned()));
3986 }
3987 }
3988 Mf::Pack2x16snorm => {
3989 if self.options.version.supports_pack_unpack_snorm_2x16() {
3990 "packSnorm2x16"
3991 } else {
3992 return Err(Error::UnsupportedExternal("packSnorm2x16".to_owned()));
3993 }
3994 }
3995 Mf::Pack2x16unorm => {
3996 if self.options.version.supports_pack_unpack_unorm_2x16() {
3997 "packUnorm2x16"
3998 } else {
3999 return Err(Error::UnsupportedExternal("packUnorm2x16".to_owned()));
4000 }
4001 }
4002 Mf::Pack2x16float => {
4003 if self.options.version.supports_pack_unpack_half_2x16() {
4004 "packHalf2x16"
4005 } else {
4006 return Err(Error::UnsupportedExternal("packHalf2x16".to_owned()));
4007 }
4008 }
4009
4010 fun @ (Mf::Pack4xI8 | Mf::Pack4xU8 | Mf::Pack4xI8Clamp | Mf::Pack4xU8Clamp) => {
4011 let was_signed = matches!(fun, Mf::Pack4xI8 | Mf::Pack4xI8Clamp);
4012 let clamp_bounds = match fun {
4013 Mf::Pack4xI8Clamp => Some(("-128", "127")),
4014 Mf::Pack4xU8Clamp => Some(("0", "255")),
4015 _ => None,
4016 };
4017 let const_suffix = if was_signed { "" } else { "u" };
4018 if was_signed {
4019 write!(self.out, "uint(")?;
4020 }
4021 let write_arg = |this: &mut Self| -> BackendResult {
4022 if let Some((min, max)) = clamp_bounds {
4023 write!(this.out, "clamp(")?;
4024 this.write_expr(arg, ctx)?;
4025 write!(this.out, ", {min}{const_suffix}, {max}{const_suffix})")?;
4026 } else {
4027 this.write_expr(arg, ctx)?;
4028 }
4029 Ok(())
4030 };
4031 write!(self.out, "(")?;
4032 write_arg(self)?;
4033 write!(self.out, "[0] & 0xFF{const_suffix}) | ((")?;
4034 write_arg(self)?;
4035 write!(self.out, "[1] & 0xFF{const_suffix}) << 8) | ((")?;
4036 write_arg(self)?;
4037 write!(self.out, "[2] & 0xFF{const_suffix}) << 16) | ((")?;
4038 write_arg(self)?;
4039 write!(self.out, "[3] & 0xFF{const_suffix}) << 24)")?;
4040 if was_signed {
4041 write!(self.out, ")")?;
4042 }
4043
4044 return Ok(());
4045 }
4046 // data unpacking
4047 Mf::Unpack2x16float => {
4048 if self.options.version.supports_pack_unpack_half_2x16() {
4049 "unpackHalf2x16"
4050 } else {
4051 return Err(Error::UnsupportedExternal("unpackHalf2x16".into()));
4052 }
4053 }
4054 Mf::Unpack2x16snorm => {
4055 if self.options.version.supports_pack_unpack_snorm_2x16() {
4056 "unpackSnorm2x16"
4057 } else {
4058 let scale = 32767;
4059
4060 write!(self.out, "(vec2(ivec2(")?;
4061 self.write_expr(arg, ctx)?;
4062 write!(self.out, " << 16, ")?;
4063 self.write_expr(arg, ctx)?;
4064 write!(self.out, ") >> 16) / {scale}.0)")?;
4065 return Ok(());
4066 }
4067 }
4068 Mf::Unpack2x16unorm => {
4069 if self.options.version.supports_pack_unpack_unorm_2x16() {
4070 "unpackUnorm2x16"
4071 } else {
4072 let scale = 65535;
4073
4074 write!(self.out, "(vec2(")?;
4075 self.write_expr(arg, ctx)?;
4076 write!(self.out, " & 0xFFFFu, ")?;
4077 self.write_expr(arg, ctx)?;
4078 write!(self.out, " >> 16) / {scale}.0)")?;
4079 return Ok(());
4080 }
4081 }
4082 Mf::Unpack4x8snorm => {
4083 if self.options.version.supports_pack_unpack_4x8() {
4084 "unpackSnorm4x8"
4085 } else {
4086 let scale = 127;
4087
4088 write!(self.out, "(vec4(ivec4(")?;
4089 self.write_expr(arg, ctx)?;
4090 write!(self.out, " << 24, ")?;
4091 self.write_expr(arg, ctx)?;
4092 write!(self.out, " << 16, ")?;
4093 self.write_expr(arg, ctx)?;
4094 write!(self.out, " << 8, ")?;
4095 self.write_expr(arg, ctx)?;
4096 write!(self.out, ") >> 24) / {scale}.0)")?;
4097 return Ok(());
4098 }
4099 }
4100 Mf::Unpack4x8unorm => {
4101 if self.options.version.supports_pack_unpack_4x8() {
4102 "unpackUnorm4x8"
4103 } else {
4104 let scale = 255;
4105
4106 write!(self.out, "(vec4(")?;
4107 self.write_expr(arg, ctx)?;
4108 write!(self.out, " & 0xFFu, ")?;
4109 self.write_expr(arg, ctx)?;
4110 write!(self.out, " >> 8 & 0xFFu, ")?;
4111 self.write_expr(arg, ctx)?;
4112 write!(self.out, " >> 16 & 0xFFu, ")?;
4113 self.write_expr(arg, ctx)?;
4114 write!(self.out, " >> 24) / {scale}.0)")?;
4115 return Ok(());
4116 }
4117 }
4118 fun @ (Mf::Unpack4xI8 | Mf::Unpack4xU8) => {
4119 let sign_prefix = match fun {
4120 Mf::Unpack4xI8 => 'i',
4121 Mf::Unpack4xU8 => 'u',
4122 _ => unreachable!(),
4123 };
4124 write!(self.out, "{sign_prefix}vec4(")?;
4125 for i in 0..4 {
4126 write!(self.out, "bitfieldExtract(")?;
4127 // Since bitfieldExtract only sign extends if the value is signed, this
4128 // cast is needed
4129 match fun {
4130 Mf::Unpack4xI8 => {
4131 write!(self.out, "int(")?;
4132 self.write_expr(arg, ctx)?;
4133 write!(self.out, ")")?;
4134 }
4135 Mf::Unpack4xU8 => self.write_expr(arg, ctx)?,
4136 _ => unreachable!(),
4137 };
4138 write!(self.out, ", {}, 8)", i * 8)?;
4139 if i != 3 {
4140 write!(self.out, ", ")?;
4141 }
4142 }
4143 write!(self.out, ")")?;
4144
4145 return Ok(());
4146 }
4147 };
4148
4149 let extract_bits = fun == Mf::ExtractBits;
4150 let insert_bits = fun == Mf::InsertBits;
4151
4152 // Some GLSL functions always return signed integers (like findMSB),
4153 // so they need to be cast to uint if the argument is also an uint.
4154 let ret_might_need_int_to_uint = matches!(
4155 fun,
4156 Mf::FirstTrailingBit | Mf::FirstLeadingBit | Mf::CountOneBits | Mf::Abs
4157 );
4158
4159 // Some GLSL functions only accept signed integers (like abs),
4160 // so they need their argument cast from uint to int.
4161 let arg_might_need_uint_to_int = matches!(fun, Mf::Abs);
4162
4163 // Check if the argument is an unsigned integer and return the vector size
4164 // in case it's a vector
4165 let maybe_uint_size = match *ctx.resolve_type(arg, &self.module.types) {
4166 TypeInner::Scalar(crate::Scalar {
4167 kind: crate::ScalarKind::Uint,
4168 ..
4169 }) => Some(None),
4170 TypeInner::Vector {
4171 scalar:
4172 crate::Scalar {
4173 kind: crate::ScalarKind::Uint,
4174 ..
4175 },
4176 size,
4177 } => Some(Some(size)),
4178 _ => None,
4179 };
4180
4181 // Cast to uint if the function needs it
4182 if ret_might_need_int_to_uint {
4183 if let Some(maybe_size) = maybe_uint_size {
4184 match maybe_size {
4185 Some(size) => write!(self.out, "uvec{}(", size as u8)?,
4186 None => write!(self.out, "uint(")?,
4187 }
4188 }
4189 }
4190
4191 write!(self.out, "{fun_name}(")?;
4192
4193 // Cast to int if the function needs it
4194 if arg_might_need_uint_to_int {
4195 if let Some(maybe_size) = maybe_uint_size {
4196 match maybe_size {
4197 Some(size) => write!(self.out, "ivec{}(", size as u8)?,
4198 None => write!(self.out, "int(")?,
4199 }
4200 }
4201 }
4202
4203 self.write_expr(arg, ctx)?;
4204
4205 // Close the cast from uint to int
4206 if arg_might_need_uint_to_int && maybe_uint_size.is_some() {
4207 write!(self.out, ")")?
4208 }
4209
4210 if let Some(arg) = arg1 {
4211 write!(self.out, ", ")?;
4212 if extract_bits {
4213 write!(self.out, "int(")?;
4214 self.write_expr(arg, ctx)?;
4215 write!(self.out, ")")?;
4216 } else {
4217 self.write_expr(arg, ctx)?;
4218 }
4219 }
4220 if let Some(arg) = arg2 {
4221 write!(self.out, ", ")?;
4222 if extract_bits || insert_bits {
4223 write!(self.out, "int(")?;
4224 self.write_expr(arg, ctx)?;
4225 write!(self.out, ")")?;
4226 } else {
4227 self.write_expr(arg, ctx)?;
4228 }
4229 }
4230 if let Some(arg) = arg3 {
4231 write!(self.out, ", ")?;
4232 if insert_bits {
4233 write!(self.out, "int(")?;
4234 self.write_expr(arg, ctx)?;
4235 write!(self.out, ")")?;
4236 } else {
4237 self.write_expr(arg, ctx)?;
4238 }
4239 }
4240 write!(self.out, ")")?;
4241
4242 // Close the cast from int to uint
4243 if ret_might_need_int_to_uint && maybe_uint_size.is_some() {
4244 write!(self.out, ")")?
4245 }
4246 }
4247 // `As` is always a call.
4248 // If `convert` is true the function name is the type
4249 // Else the function name is one of the glsl provided bitcast functions
4250 Expression::As {
4251 expr,
4252 kind: target_kind,
4253 convert,
4254 } => {
4255 let inner = ctx.resolve_type(expr, &self.module.types);
4256 match convert {
4257 Some(width) => {
4258 // this is similar to `write_type`, but with the target kind
4259 let scalar = glsl_scalar(crate::Scalar {
4260 kind: target_kind,
4261 width,
4262 })?;
4263 match *inner {
4264 TypeInner::Matrix { columns, rows, .. } => write!(
4265 self.out,
4266 "{}mat{}x{}",
4267 scalar.prefix, columns as u8, rows as u8
4268 )?,
4269 TypeInner::Vector { size, .. } => {
4270 write!(self.out, "{}vec{}", scalar.prefix, size as u8)?
4271 }
4272 _ => write!(self.out, "{}", scalar.full)?,
4273 }
4274
4275 write!(self.out, "(")?;
4276 self.write_expr(expr, ctx)?;
4277 write!(self.out, ")")?
4278 }
4279 None => {
4280 use crate::ScalarKind as Sk;
4281
4282 let target_vector_type = match *inner {
4283 TypeInner::Vector { size, scalar } => Some(TypeInner::Vector {
4284 size,
4285 scalar: crate::Scalar {
4286 kind: target_kind,
4287 width: scalar.width,
4288 },
4289 }),
4290 _ => None,
4291 };
4292
4293 let source_kind = inner.scalar_kind().unwrap();
4294
4295 match (source_kind, target_kind, target_vector_type) {
4296 // No conversion needed
4297 (Sk::Sint, Sk::Sint, _)
4298 | (Sk::Uint, Sk::Uint, _)
4299 | (Sk::Float, Sk::Float, _)
4300 | (Sk::Bool, Sk::Bool, _) => {
4301 self.write_expr(expr, ctx)?;
4302 return Ok(());
4303 }
4304
4305 // Cast to/from floats
4306 (Sk::Float, Sk::Sint, _) => write!(self.out, "floatBitsToInt")?,
4307 (Sk::Float, Sk::Uint, _) => write!(self.out, "floatBitsToUint")?,
4308 (Sk::Sint, Sk::Float, _) => write!(self.out, "intBitsToFloat")?,
4309 (Sk::Uint, Sk::Float, _) => write!(self.out, "uintBitsToFloat")?,
4310
4311 // Cast between vector types
4312 (_, _, Some(vector)) => {
4313 self.write_value_type(&vector)?;
4314 }
4315
4316 // There is no way to bitcast between Uint/Sint in glsl. Use constructor conversion
4317 (Sk::Uint | Sk::Bool, Sk::Sint, None) => write!(self.out, "int")?,
4318 (Sk::Sint | Sk::Bool, Sk::Uint, None) => write!(self.out, "uint")?,
4319 (Sk::Bool, Sk::Float, None) => write!(self.out, "float")?,
4320 (Sk::Sint | Sk::Uint | Sk::Float, Sk::Bool, None) => {
4321 write!(self.out, "bool")?
4322 }
4323
4324 (Sk::AbstractInt | Sk::AbstractFloat, _, _)
4325 | (_, Sk::AbstractInt | Sk::AbstractFloat, _) => unreachable!(),
4326 };
4327
4328 write!(self.out, "(")?;
4329 self.write_expr(expr, ctx)?;
4330 write!(self.out, ")")?;
4331 }
4332 }
4333 }
4334 // These expressions never show up in `Emit`.
4335 Expression::CallResult(_)
4336 | Expression::AtomicResult { .. }
4337 | Expression::RayQueryProceedResult
4338 | Expression::WorkGroupUniformLoadResult { .. }
4339 | Expression::SubgroupOperationResult { .. }
4340 | Expression::SubgroupBallotResult => unreachable!(),
4341 // `ArrayLength` is written as `expr.length()` and we convert it to a uint
4342 Expression::ArrayLength(expr) => {
4343 write!(self.out, "uint(")?;
4344 self.write_expr(expr, ctx)?;
4345 write!(self.out, ".length())")?
4346 }
4347 // not supported yet
4348 Expression::RayQueryGetIntersection { .. }
4349 | Expression::RayQueryVertexPositions { .. } => unreachable!(),
4350 }
4351
4352 Ok(())
4353 }
4354
4355 /// Helper function to write the local holding the clamped lod
4356 fn write_clamped_lod(
4357 &mut self,
4358 ctx: &back::FunctionCtx,
4359 expr: Handle<crate::Expression>,
4360 image: Handle<crate::Expression>,
4361 level_expr: Handle<crate::Expression>,
4362 ) -> Result<(), Error> {
4363 // Define our local and start a call to `clamp`
4364 write!(
4365 self.out,
4366 "int {}{} = clamp(",
4367 Baked(expr),
4368 CLAMPED_LOD_SUFFIX
4369 )?;
4370 // Write the lod that will be clamped
4371 self.write_expr(level_expr, ctx)?;
4372 // Set the min value to 0 and start a call to `textureQueryLevels` to get
4373 // the maximum value
4374 write!(self.out, ", 0, textureQueryLevels(")?;
4375 // Write the target image as an argument to `textureQueryLevels`
4376 self.write_expr(image, ctx)?;
4377 // Close the call to `textureQueryLevels` subtract 1 from it since
4378 // the lod argument is 0 based, close the `clamp` call and end the
4379 // local declaration statement.
4380 writeln!(self.out, ") - 1);")?;
4381
4382 Ok(())
4383 }
4384
4385 // Helper method used to retrieve how many elements a coordinate vector
4386 // for the images operations need.
4387 fn get_coordinate_vector_size(&self, dim: crate::ImageDimension, arrayed: bool) -> u8 {
4388 // openGL es doesn't have 1D images so we need workaround it
4389 let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
4390 // Get how many components the coordinate vector needs for the dimensions only
4391 let tex_coord_size = match dim {
4392 crate::ImageDimension::D1 => 1,
4393 crate::ImageDimension::D2 => 2,
4394 crate::ImageDimension::D3 => 3,
4395 crate::ImageDimension::Cube => 2,
4396 };
4397 // Calculate the true size of the coordinate vector by adding 1 for arrayed images
4398 // and another 1 if we need to workaround 1D images by making them 2D
4399 tex_coord_size + tex_1d_hack as u8 + arrayed as u8
4400 }
4401
4402 /// Helper method to write the coordinate vector for image operations
4403 fn write_texture_coord(
4404 &mut self,
4405 ctx: &back::FunctionCtx,
4406 vector_size: u8,
4407 coordinate: Handle<crate::Expression>,
4408 array_index: Option<Handle<crate::Expression>>,
4409 // Emulate 1D images as 2D for profiles that don't support it (glsl es)
4410 tex_1d_hack: bool,
4411 ) -> Result<(), Error> {
4412 match array_index {
4413 // If the image needs an array indice we need to add it to the end of our
4414 // coordinate vector, to do so we will use the `ivec(ivec, scalar)`
4415 // constructor notation (NOTE: the inner `ivec` can also be a scalar, this
4416 // is important for 1D arrayed images).
4417 Some(layer_expr) => {
4418 write!(self.out, "ivec{vector_size}(")?;
4419 self.write_expr(coordinate, ctx)?;
4420 write!(self.out, ", ")?;
4421 // If we are replacing sampler1D with sampler2D we also need
4422 // to add another zero to the coordinates vector for the y component
4423 if tex_1d_hack {
4424 write!(self.out, "0, ")?;
4425 }
4426 self.write_expr(layer_expr, ctx)?;
4427 write!(self.out, ")")?;
4428 }
4429 // Otherwise write just the expression (and the 1D hack if needed)
4430 None => {
4431 let uvec_size = match *ctx.resolve_type(coordinate, &self.module.types) {
4432 TypeInner::Scalar(crate::Scalar {
4433 kind: crate::ScalarKind::Uint,
4434 ..
4435 }) => Some(None),
4436 TypeInner::Vector {
4437 size,
4438 scalar:
4439 crate::Scalar {
4440 kind: crate::ScalarKind::Uint,
4441 ..
4442 },
4443 } => Some(Some(size as u32)),
4444 _ => None,
4445 };
4446 if tex_1d_hack {
4447 write!(self.out, "ivec2(")?;
4448 } else if uvec_size.is_some() {
4449 match uvec_size {
4450 Some(None) => write!(self.out, "int(")?,
4451 Some(Some(size)) => write!(self.out, "ivec{size}(")?,
4452 _ => {}
4453 }
4454 }
4455 self.write_expr(coordinate, ctx)?;
4456 if tex_1d_hack {
4457 write!(self.out, ", 0)")?;
4458 } else if uvec_size.is_some() {
4459 write!(self.out, ")")?;
4460 }
4461 }
4462 }
4463
4464 Ok(())
4465 }
4466
4467 /// Helper method to write the `ImageStore` statement
4468 fn write_image_store(
4469 &mut self,
4470 ctx: &back::FunctionCtx,
4471 image: Handle<crate::Expression>,
4472 coordinate: Handle<crate::Expression>,
4473 array_index: Option<Handle<crate::Expression>>,
4474 value: Handle<crate::Expression>,
4475 ) -> Result<(), Error> {
4476 use crate::ImageDimension as IDim;
4477
4478 // NOTE: openGL requires that `imageStore`s have no effects when the texel is invalid
4479 // so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
4480
4481 // This will only panic if the module is invalid
4482 let dim = match *ctx.resolve_type(image, &self.module.types) {
4483 TypeInner::Image { dim, .. } => dim,
4484 _ => unreachable!(),
4485 };
4486
4487 // Begin our call to `imageStore`
4488 write!(self.out, "imageStore(")?;
4489 self.write_expr(image, ctx)?;
4490 // Separate the image argument from the coordinates
4491 write!(self.out, ", ")?;
4492
4493 // openGL es doesn't have 1D images so we need workaround it
4494 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4495 // Write the coordinate vector
4496 self.write_texture_coord(
4497 ctx,
4498 // Get the size of the coordinate vector
4499 self.get_coordinate_vector_size(dim, array_index.is_some()),
4500 coordinate,
4501 array_index,
4502 tex_1d_hack,
4503 )?;
4504
4505 // Separate the coordinate from the value to write and write the expression
4506 // of the value to write.
4507 write!(self.out, ", ")?;
4508 self.write_expr(value, ctx)?;
4509 // End the call to `imageStore` and the statement.
4510 writeln!(self.out, ");")?;
4511
4512 Ok(())
4513 }
4514
4515 /// Helper method to write the `ImageAtomic` statement
4516 fn write_image_atomic(
4517 &mut self,
4518 ctx: &back::FunctionCtx,
4519 image: Handle<crate::Expression>,
4520 coordinate: Handle<crate::Expression>,
4521 array_index: Option<Handle<crate::Expression>>,
4522 fun: crate::AtomicFunction,
4523 value: Handle<crate::Expression>,
4524 ) -> Result<(), Error> {
4525 use crate::ImageDimension as IDim;
4526
4527 // NOTE: openGL requires that `imageAtomic`s have no effects when the texel is invalid
4528 // so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
4529
4530 // This will only panic if the module is invalid
4531 let dim = match *ctx.resolve_type(image, &self.module.types) {
4532 TypeInner::Image { dim, .. } => dim,
4533 _ => unreachable!(),
4534 };
4535
4536 // Begin our call to `imageAtomic`
4537 let fun_str = fun.to_glsl();
4538 write!(self.out, "imageAtomic{fun_str}(")?;
4539 self.write_expr(image, ctx)?;
4540 // Separate the image argument from the coordinates
4541 write!(self.out, ", ")?;
4542
4543 // openGL es doesn't have 1D images so we need workaround it
4544 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4545 // Write the coordinate vector
4546 self.write_texture_coord(
4547 ctx,
4548 // Get the size of the coordinate vector
4549 self.get_coordinate_vector_size(dim, false),
4550 coordinate,
4551 array_index,
4552 tex_1d_hack,
4553 )?;
4554
4555 // Separate the coordinate from the value to write and write the expression
4556 // of the value to write.
4557 write!(self.out, ", ")?;
4558 self.write_expr(value, ctx)?;
4559 // End the call to `imageAtomic` and the statement.
4560 writeln!(self.out, ");")?;
4561
4562 Ok(())
4563 }
4564
4565 /// Helper method for writing an `ImageLoad` expression.
4566 #[allow(clippy::too_many_arguments)]
4567 fn write_image_load(
4568 &mut self,
4569 handle: Handle<crate::Expression>,
4570 ctx: &back::FunctionCtx,
4571 image: Handle<crate::Expression>,
4572 coordinate: Handle<crate::Expression>,
4573 array_index: Option<Handle<crate::Expression>>,
4574 sample: Option<Handle<crate::Expression>>,
4575 level: Option<Handle<crate::Expression>>,
4576 ) -> Result<(), Error> {
4577 use crate::ImageDimension as IDim;
4578
4579 // `ImageLoad` is a bit complicated.
4580 // There are two functions one for sampled
4581 // images another for storage images, the former uses `texelFetch` and the
4582 // latter uses `imageLoad`.
4583 //
4584 // Furthermore we have `level` which is always `Some` for sampled images
4585 // and `None` for storage images, so we end up with two functions:
4586 // - `texelFetch(image, coordinate, level)` for sampled images
4587 // - `imageLoad(image, coordinate)` for storage images
4588 //
4589 // Finally we also have to consider bounds checking, for storage images
4590 // this is easy since openGL requires that invalid texels always return
4591 // 0, for sampled images we need to either verify that all arguments are
4592 // in bounds (`ReadZeroSkipWrite`) or make them a valid texel (`Restrict`).
4593
4594 // This will only panic if the module is invalid
4595 let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
4596 TypeInner::Image {
4597 dim,
4598 arrayed: _,
4599 class,
4600 } => (dim, class),
4601 _ => unreachable!(),
4602 };
4603
4604 // Get the name of the function to be used for the load operation
4605 // and the policy to be used with it.
4606 let (fun_name, policy) = match class {
4607 // Sampled images inherit the policy from the user passed policies
4608 crate::ImageClass::Sampled { .. } => ("texelFetch", self.policies.image_load),
4609 crate::ImageClass::Storage { .. } => {
4610 // OpenGL ES 3.1 mentions in Chapter "8.22 Texture Image Loads and Stores" that:
4611 // "Invalid image loads will return a vector where the value of R, G, and B components
4612 // is 0 and the value of the A component is undefined."
4613 //
4614 // OpenGL 4.2 Core mentions in Chapter "3.9.20 Texture Image Loads and Stores" that:
4615 // "Invalid image loads will return zero."
4616 //
4617 // So, we only inject bounds checks for ES
4618 let policy = if self.options.version.is_es() {
4619 self.policies.image_load
4620 } else {
4621 proc::BoundsCheckPolicy::Unchecked
4622 };
4623 ("imageLoad", policy)
4624 }
4625 // TODO: Is there even a function for this?
4626 crate::ImageClass::Depth { multi: _ } => {
4627 return Err(Error::Custom(
4628 "WGSL `textureLoad` from depth textures is not supported in GLSL".to_string(),
4629 ))
4630 }
4631 crate::ImageClass::External => unimplemented!(),
4632 };
4633
4634 // openGL es doesn't have 1D images so we need workaround it
4635 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4636 // Get the size of the coordinate vector
4637 let vector_size = self.get_coordinate_vector_size(dim, array_index.is_some());
4638
4639 if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
4640 // To write the bounds checks for `ReadZeroSkipWrite` we will use a
4641 // ternary operator since we are in the middle of an expression and
4642 // need to return a value.
4643 //
4644 // NOTE: glsl does short circuit when evaluating logical
4645 // expressions so we can be sure that after we test a
4646 // condition it will be true for the next ones
4647
4648 // Write parentheses around the ternary operator to prevent problems with
4649 // expressions emitted before or after it having more precedence
4650 write!(self.out, "(",)?;
4651
4652 // The lod check needs to precede the size check since we need
4653 // to use the lod to get the size of the image at that level.
4654 if let Some(level_expr) = level {
4655 self.write_expr(level_expr, ctx)?;
4656 write!(self.out, " < textureQueryLevels(",)?;
4657 self.write_expr(image, ctx)?;
4658 // Chain the next check
4659 write!(self.out, ") && ")?;
4660 }
4661
4662 // Check that the sample arguments doesn't exceed the number of samples
4663 if let Some(sample_expr) = sample {
4664 self.write_expr(sample_expr, ctx)?;
4665 write!(self.out, " < textureSamples(",)?;
4666 self.write_expr(image, ctx)?;
4667 // Chain the next check
4668 write!(self.out, ") && ")?;
4669 }
4670
4671 // We now need to write the size checks for the coordinates and array index
4672 // first we write the comparison function in case the image is 1D non arrayed
4673 // (and no 1D to 2D hack was needed) we are comparing scalars so the less than
4674 // operator will suffice, but otherwise we'll be comparing two vectors so we'll
4675 // need to use the `lessThan` function but it returns a vector of booleans (one
4676 // for each comparison) so we need to fold it all in one scalar boolean, since
4677 // we want all comparisons to pass we use the `all` function which will only
4678 // return `true` if all the elements of the boolean vector are also `true`.
4679 //
4680 // So we'll end with one of the following forms
4681 // - `coord < textureSize(image, lod)` for 1D images
4682 // - `all(lessThan(coord, textureSize(image, lod)))` for normal images
4683 // - `all(lessThan(ivec(coord, array_index), textureSize(image, lod)))`
4684 // for arrayed images
4685 // - `all(lessThan(coord, textureSize(image)))` for multi sampled images
4686
4687 if vector_size != 1 {
4688 write!(self.out, "all(lessThan(")?;
4689 }
4690
4691 // Write the coordinate vector
4692 self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
4693
4694 if vector_size != 1 {
4695 // If we used the `lessThan` function we need to separate the
4696 // coordinates from the image size.
4697 write!(self.out, ", ")?;
4698 } else {
4699 // If we didn't use it (ie. 1D images) we perform the comparison
4700 // using the less than operator.
4701 write!(self.out, " < ")?;
4702 }
4703
4704 // Call `textureSize` to get our image size
4705 write!(self.out, "textureSize(")?;
4706 self.write_expr(image, ctx)?;
4707 // `textureSize` uses the lod as a second argument for mipmapped images
4708 if let Some(level_expr) = level {
4709 // Separate the image from the lod
4710 write!(self.out, ", ")?;
4711 self.write_expr(level_expr, ctx)?;
4712 }
4713 // Close the `textureSize` call
4714 write!(self.out, ")")?;
4715
4716 if vector_size != 1 {
4717 // Close the `all` and `lessThan` calls
4718 write!(self.out, "))")?;
4719 }
4720
4721 // Finally end the condition part of the ternary operator
4722 write!(self.out, " ? ")?;
4723 }
4724
4725 // Begin the call to the function used to load the texel
4726 write!(self.out, "{fun_name}(")?;
4727 self.write_expr(image, ctx)?;
4728 write!(self.out, ", ")?;
4729
4730 // If we are using `Restrict` bounds checking we need to pass valid texel
4731 // coordinates, to do so we use the `clamp` function to get a value between
4732 // 0 and the image size - 1 (indexing begins at 0)
4733 if let proc::BoundsCheckPolicy::Restrict = policy {
4734 write!(self.out, "clamp(")?;
4735 }
4736
4737 // Write the coordinate vector
4738 self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
4739
4740 // If we are using `Restrict` bounds checking we need to write the rest of the
4741 // clamp we initiated before writing the coordinates.
4742 if let proc::BoundsCheckPolicy::Restrict = policy {
4743 // Write the min value 0
4744 if vector_size == 1 {
4745 write!(self.out, ", 0")?;
4746 } else {
4747 write!(self.out, ", ivec{vector_size}(0)")?;
4748 }
4749 // Start the `textureSize` call to use as the max value.
4750 write!(self.out, ", textureSize(")?;
4751 self.write_expr(image, ctx)?;
4752 // If the image is mipmapped we need to add the lod argument to the
4753 // `textureSize` call, but this needs to be the clamped lod, this should
4754 // have been generated earlier and put in a local.
4755 if class.is_mipmapped() {
4756 write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
4757 }
4758 // Close the `textureSize` call
4759 write!(self.out, ")")?;
4760
4761 // Subtract 1 from the `textureSize` call since the coordinates are zero based.
4762 if vector_size == 1 {
4763 write!(self.out, " - 1")?;
4764 } else {
4765 write!(self.out, " - ivec{vector_size}(1)")?;
4766 }
4767
4768 // Close the `clamp` call
4769 write!(self.out, ")")?;
4770
4771 // Add the clamped lod (if present) as the second argument to the
4772 // image load function.
4773 if level.is_some() {
4774 write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
4775 }
4776
4777 // If a sample argument is needed we need to clamp it between 0 and
4778 // the number of samples the image has.
4779 if let Some(sample_expr) = sample {
4780 write!(self.out, ", clamp(")?;
4781 self.write_expr(sample_expr, ctx)?;
4782 // Set the min value to 0 and start the call to `textureSamples`
4783 write!(self.out, ", 0, textureSamples(")?;
4784 self.write_expr(image, ctx)?;
4785 // Close the `textureSamples` call, subtract 1 from it since the sample
4786 // argument is zero based, and close the `clamp` call
4787 writeln!(self.out, ") - 1)")?;
4788 }
4789 } else if let Some(sample_or_level) = sample.or(level) {
4790 // GLSL only support SInt on this field while WGSL support also UInt
4791 let cast_to_int = matches!(
4792 *ctx.resolve_type(sample_or_level, &self.module.types),
4793 TypeInner::Scalar(crate::Scalar {
4794 kind: crate::ScalarKind::Uint,
4795 ..
4796 })
4797 );
4798
4799 // If no bounds checking is need just add the sample or level argument
4800 // after the coordinates
4801 write!(self.out, ", ")?;
4802
4803 if cast_to_int {
4804 write!(self.out, "int(")?;
4805 }
4806
4807 self.write_expr(sample_or_level, ctx)?;
4808
4809 if cast_to_int {
4810 write!(self.out, ")")?;
4811 }
4812 }
4813
4814 // Close the image load function.
4815 write!(self.out, ")")?;
4816
4817 // If we were using the `ReadZeroSkipWrite` policy we need to end the first branch
4818 // (which is taken if the condition is `true`) with a colon (`:`) and write the
4819 // second branch which is just a 0 value.
4820 if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
4821 // Get the kind of the output value.
4822 let kind = match class {
4823 // Only sampled images can reach here since storage images
4824 // don't need bounds checks and depth images aren't implemented
4825 crate::ImageClass::Sampled { kind, .. } => kind,
4826 _ => unreachable!(),
4827 };
4828
4829 // End the first branch
4830 write!(self.out, " : ")?;
4831 // Write the 0 value
4832 write!(
4833 self.out,
4834 "{}vec4(",
4835 glsl_scalar(crate::Scalar { kind, width: 4 })?.prefix,
4836 )?;
4837 self.write_zero_init_scalar(kind)?;
4838 // Close the zero value constructor
4839 write!(self.out, ")")?;
4840 // Close the parentheses surrounding our ternary
4841 write!(self.out, ")")?;
4842 }
4843
4844 Ok(())
4845 }
4846
4847 fn write_named_expr(
4848 &mut self,
4849 handle: Handle<crate::Expression>,
4850 name: String,
4851 // The expression which is being named.
4852 // Generally, this is the same as handle, except in WorkGroupUniformLoad
4853 named: Handle<crate::Expression>,
4854 ctx: &back::FunctionCtx,
4855 ) -> BackendResult {
4856 match ctx.info[named].ty {
4857 proc::TypeResolution::Handle(ty_handle) => match self.module.types[ty_handle].inner {
4858 TypeInner::Struct { .. } => {
4859 let ty_name = &self.names[&NameKey::Type(ty_handle)];
4860 write!(self.out, "{ty_name}")?;
4861 }
4862 _ => {
4863 self.write_type(ty_handle)?;
4864 }
4865 },
4866 proc::TypeResolution::Value(ref inner) => {
4867 self.write_value_type(inner)?;
4868 }
4869 }
4870
4871 let resolved = ctx.resolve_type(named, &self.module.types);
4872
4873 write!(self.out, " {name}")?;
4874 if let TypeInner::Array { base, size, .. } = *resolved {
4875 self.write_array_size(base, size)?;
4876 }
4877 write!(self.out, " = ")?;
4878 self.write_expr(handle, ctx)?;
4879 writeln!(self.out, ";")?;
4880 self.named_expressions.insert(named, name);
4881
4882 Ok(())
4883 }
4884
4885 /// Helper function that write string with default zero initialization for supported types
4886 fn write_zero_init_value(&mut self, ty: Handle<crate::Type>) -> BackendResult {
4887 let inner = &self.module.types[ty].inner;
4888 match *inner {
4889 TypeInner::Scalar(scalar) | TypeInner::Atomic(scalar) => {
4890 self.write_zero_init_scalar(scalar.kind)?;
4891 }
4892 TypeInner::Vector { scalar, .. } => {
4893 self.write_value_type(inner)?;
4894 write!(self.out, "(")?;
4895 self.write_zero_init_scalar(scalar.kind)?;
4896 write!(self.out, ")")?;
4897 }
4898 TypeInner::Matrix { .. } => {
4899 self.write_value_type(inner)?;
4900 write!(self.out, "(")?;
4901 self.write_zero_init_scalar(crate::ScalarKind::Float)?;
4902 write!(self.out, ")")?;
4903 }
4904 TypeInner::Array { base, size, .. } => {
4905 let count = match size.resolve(self.module.to_ctx())? {
4906 proc::IndexableLength::Known(count) => count,
4907 proc::IndexableLength::Dynamic => return Ok(()),
4908 };
4909 self.write_type(base)?;
4910 self.write_array_size(base, size)?;
4911 write!(self.out, "(")?;
4912 for _ in 1..count {
4913 self.write_zero_init_value(base)?;
4914 write!(self.out, ", ")?;
4915 }
4916 // write last parameter without comma and space
4917 self.write_zero_init_value(base)?;
4918 write!(self.out, ")")?;
4919 }
4920 TypeInner::Struct { ref members, .. } => {
4921 let name = &self.names[&NameKey::Type(ty)];
4922 write!(self.out, "{name}(")?;
4923 for (index, member) in members.iter().enumerate() {
4924 if index != 0 {
4925 write!(self.out, ", ")?;
4926 }
4927 self.write_zero_init_value(member.ty)?;
4928 }
4929 write!(self.out, ")")?;
4930 }
4931 _ => unreachable!(),
4932 }
4933
4934 Ok(())
4935 }
4936
4937 /// Helper function that write string with zero initialization for scalar
4938 fn write_zero_init_scalar(&mut self, kind: crate::ScalarKind) -> BackendResult {
4939 match kind {
4940 crate::ScalarKind::Bool => write!(self.out, "false")?,
4941 crate::ScalarKind::Uint => write!(self.out, "0u")?,
4942 crate::ScalarKind::Float => write!(self.out, "0.0")?,
4943 crate::ScalarKind::Sint => write!(self.out, "0")?,
4944 crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => {
4945 return Err(Error::Custom(
4946 "Abstract types should not appear in IR presented to backends".to_string(),
4947 ))
4948 }
4949 }
4950
4951 Ok(())
4952 }
4953
4954 /// Issue a control barrier.
4955 fn write_control_barrier(
4956 &mut self,
4957 flags: crate::Barrier,
4958 level: back::Level,
4959 ) -> BackendResult {
4960 self.write_memory_barrier(flags, level)?;
4961 writeln!(self.out, "{level}barrier();")?;
4962 Ok(())
4963 }
4964
4965 /// Issue a memory barrier.
4966 fn write_memory_barrier(&mut self, flags: crate::Barrier, level: back::Level) -> BackendResult {
4967 if flags.contains(crate::Barrier::STORAGE) {
4968 writeln!(self.out, "{level}memoryBarrierBuffer();")?;
4969 }
4970 if flags.contains(crate::Barrier::WORK_GROUP) {
4971 writeln!(self.out, "{level}memoryBarrierShared();")?;
4972 }
4973 if flags.contains(crate::Barrier::SUB_GROUP) {
4974 writeln!(self.out, "{level}subgroupMemoryBarrier();")?;
4975 }
4976 if flags.contains(crate::Barrier::TEXTURE) {
4977 writeln!(self.out, "{level}memoryBarrierImage();")?;
4978 }
4979 Ok(())
4980 }
4981
4982 /// Helper function that return the glsl storage access string of [`StorageAccess`](crate::StorageAccess)
4983 ///
4984 /// glsl allows adding both `readonly` and `writeonly` but this means that
4985 /// they can only be used to query information about the resource which isn't what
4986 /// we want here so when storage access is both `LOAD` and `STORE` add no modifiers
4987 fn write_storage_access(&mut self, storage_access: crate::StorageAccess) -> BackendResult {
4988 if storage_access.contains(crate::StorageAccess::ATOMIC) {
4989 return Ok(());
4990 }
4991 if !storage_access.contains(crate::StorageAccess::STORE) {
4992 write!(self.out, "readonly ")?;
4993 }
4994 if !storage_access.contains(crate::StorageAccess::LOAD) {
4995 write!(self.out, "writeonly ")?;
4996 }
4997 Ok(())
4998 }
4999
5000 /// Helper method used to produce the reflection info that's returned to the user
5001 fn collect_reflection_info(&mut self) -> Result<ReflectionInfo, Error> {
5002 let info = self.info.get_entry_point(self.entry_point_idx as usize);
5003 let mut texture_mapping = crate::FastHashMap::default();
5004 let mut uniforms = crate::FastHashMap::default();
5005
5006 for sampling in info.sampling_set.iter() {
5007 let tex_name = self.reflection_names_globals[&sampling.image].clone();
5008
5009 match texture_mapping.entry(tex_name) {
5010 hash_map::Entry::Vacant(v) => {
5011 v.insert(TextureMapping {
5012 texture: sampling.image,
5013 sampler: Some(sampling.sampler),
5014 });
5015 }
5016 hash_map::Entry::Occupied(e) => {
5017 if e.get().sampler != Some(sampling.sampler) {
5018 log::error!("Conflicting samplers for {}", e.key());
5019 return Err(Error::ImageMultipleSamplers);
5020 }
5021 }
5022 }
5023 }
5024
5025 let mut push_constant_info = None;
5026 for (handle, var) in self.module.global_variables.iter() {
5027 if info[handle].is_empty() {
5028 continue;
5029 }
5030 match self.module.types[var.ty].inner {
5031 TypeInner::Image { .. } => {
5032 let tex_name = self.reflection_names_globals[&handle].clone();
5033 match texture_mapping.entry(tex_name) {
5034 hash_map::Entry::Vacant(v) => {
5035 v.insert(TextureMapping {
5036 texture: handle,
5037 sampler: None,
5038 });
5039 }
5040 hash_map::Entry::Occupied(_) => {
5041 // already used with a sampler, do nothing
5042 }
5043 }
5044 }
5045 _ => match var.space {
5046 crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => {
5047 let name = self.reflection_names_globals[&handle].clone();
5048 uniforms.insert(handle, name);
5049 }
5050 crate::AddressSpace::PushConstant => {
5051 let name = self.reflection_names_globals[&handle].clone();
5052 push_constant_info = Some((name, var.ty));
5053 }
5054 _ => (),
5055 },
5056 }
5057 }
5058
5059 let mut push_constant_segments = Vec::new();
5060 let mut push_constant_items = vec![];
5061
5062 if let Some((name, ty)) = push_constant_info {
5063 // We don't have a layouter available to us, so we need to create one.
5064 //
5065 // This is potentially a bit wasteful, but the set of types in the program
5066 // shouldn't be too large.
5067 let mut layouter = proc::Layouter::default();
5068 layouter.update(self.module.to_ctx()).unwrap();
5069
5070 // We start with the name of the binding itself.
5071 push_constant_segments.push(name);
5072
5073 // We then recursively collect all the uniform fields of the push constant.
5074 self.collect_push_constant_items(
5075 ty,
5076 &mut push_constant_segments,
5077 &layouter,
5078 &mut 0,
5079 &mut push_constant_items,
5080 );
5081 }
5082
5083 Ok(ReflectionInfo {
5084 texture_mapping,
5085 uniforms,
5086 varying: mem::take(&mut self.varying),
5087 push_constant_items,
5088 clip_distance_count: self.clip_distance_count,
5089 })
5090 }
5091
5092 fn collect_push_constant_items(
5093 &mut self,
5094 ty: Handle<crate::Type>,
5095 segments: &mut Vec<String>,
5096 layouter: &proc::Layouter,
5097 offset: &mut u32,
5098 items: &mut Vec<PushConstantItem>,
5099 ) {
5100 // At this point in the recursion, `segments` contains the path
5101 // needed to access `ty` from the root.
5102
5103 let layout = &layouter[ty];
5104 *offset = layout.alignment.round_up(*offset);
5105 match self.module.types[ty].inner {
5106 // All these types map directly to GL uniforms.
5107 TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => {
5108 // Build the full name, by combining all current segments.
5109 let name: String = segments.iter().map(String::as_str).collect();
5110 items.push(PushConstantItem {
5111 access_path: name,
5112 offset: *offset,
5113 ty,
5114 });
5115 *offset += layout.size;
5116 }
5117 // Arrays are recursed into.
5118 TypeInner::Array { base, size, .. } => {
5119 let crate::ArraySize::Constant(count) = size else {
5120 unreachable!("Cannot have dynamic arrays in push constants");
5121 };
5122
5123 for i in 0..count.get() {
5124 // Add the array accessor and recurse.
5125 segments.push(format!("[{i}]"));
5126 self.collect_push_constant_items(base, segments, layouter, offset, items);
5127 segments.pop();
5128 }
5129
5130 // Ensure the stride is kept by rounding up to the alignment.
5131 *offset = layout.alignment.round_up(*offset)
5132 }
5133 TypeInner::Struct { ref members, .. } => {
5134 for (index, member) in members.iter().enumerate() {
5135 // Add struct accessor and recurse.
5136 segments.push(format!(
5137 ".{}",
5138 self.names[&NameKey::StructMember(ty, index as u32)]
5139 ));
5140 self.collect_push_constant_items(member.ty, segments, layouter, offset, items);
5141 segments.pop();
5142 }
5143
5144 // Ensure ending padding is kept by rounding up to the alignment.
5145 *offset = layout.alignment.round_up(*offset)
5146 }
5147 _ => unreachable!(),
5148 }
5149 }
5150}
5151
5152/// Structure returned by [`glsl_scalar`]
5153///
5154/// It contains both a prefix used in other types and the full type name
5155struct ScalarString<'a> {
5156 /// The prefix used to compose other types
5157 prefix: &'a str,
5158 /// The name of the scalar type
5159 full: &'a str,
5160}
5161
5162/// Helper function that returns scalar related strings
5163///
5164/// Check [`ScalarString`] for the information provided
5165///
5166/// # Errors
5167/// If a [`Float`](crate::ScalarKind::Float) with an width that isn't 4 or 8
5168const fn glsl_scalar(scalar: crate::Scalar) -> Result<ScalarString<'static>, Error> {
5169 use crate::ScalarKind as Sk;
5170
5171 Ok(match scalar.kind {
5172 Sk::Sint => ScalarString {
5173 prefix: "i",
5174 full: "int",
5175 },
5176 Sk::Uint => ScalarString {
5177 prefix: "u",
5178 full: "uint",
5179 },
5180 Sk::Float => match scalar.width {
5181 4 => ScalarString {
5182 prefix: "",
5183 full: "float",
5184 },
5185 8 => ScalarString {
5186 prefix: "d",
5187 full: "double",
5188 },
5189 _ => return Err(Error::UnsupportedScalar(scalar)),
5190 },
5191 Sk::Bool => ScalarString {
5192 prefix: "b",
5193 full: "bool",
5194 },
5195 Sk::AbstractInt | Sk::AbstractFloat => {
5196 return Err(Error::UnsupportedScalar(scalar));
5197 }
5198 })
5199}
5200
5201/// Helper function that returns the glsl variable name for a builtin
5202const fn glsl_built_in(built_in: crate::BuiltIn, options: VaryingOptions) -> &'static str {
5203 use crate::BuiltIn as Bi;
5204
5205 match built_in {
5206 Bi::Position { .. } => {
5207 if options.output {
5208 "gl_Position"
5209 } else {
5210 "gl_FragCoord"
5211 }
5212 }
5213 Bi::ViewIndex => {
5214 if options.targeting_webgl {
5215 "gl_ViewID_OVR"
5216 } else {
5217 "uint(gl_ViewIndex)"
5218 }
5219 }
5220 // vertex
5221 Bi::BaseInstance => "uint(gl_BaseInstance)",
5222 Bi::BaseVertex => "uint(gl_BaseVertex)",
5223 Bi::ClipDistance => "gl_ClipDistance",
5224 Bi::CullDistance => "gl_CullDistance",
5225 Bi::InstanceIndex => {
5226 if options.draw_parameters {
5227 "(uint(gl_InstanceID) + uint(gl_BaseInstanceARB))"
5228 } else {
5229 // Must match FIRST_INSTANCE_BINDING
5230 "(uint(gl_InstanceID) + naga_vs_first_instance)"
5231 }
5232 }
5233 Bi::PointSize => "gl_PointSize",
5234 Bi::VertexIndex => "uint(gl_VertexID)",
5235 Bi::DrawID => "gl_DrawID",
5236 // fragment
5237 Bi::FragDepth => "gl_FragDepth",
5238 Bi::PointCoord => "gl_PointCoord",
5239 Bi::FrontFacing => "gl_FrontFacing",
5240 Bi::PrimitiveIndex => "uint(gl_PrimitiveID)",
5241 Bi::Barycentric => "gl_BaryCoordEXT",
5242 Bi::SampleIndex => "gl_SampleID",
5243 Bi::SampleMask => {
5244 if options.output {
5245 "gl_SampleMask"
5246 } else {
5247 "gl_SampleMaskIn"
5248 }
5249 }
5250 // compute
5251 Bi::GlobalInvocationId => "gl_GlobalInvocationID",
5252 Bi::LocalInvocationId => "gl_LocalInvocationID",
5253 Bi::LocalInvocationIndex => "gl_LocalInvocationIndex",
5254 Bi::WorkGroupId => "gl_WorkGroupID",
5255 Bi::WorkGroupSize => "gl_WorkGroupSize",
5256 Bi::NumWorkGroups => "gl_NumWorkGroups",
5257 // subgroup
5258 Bi::NumSubgroups => "gl_NumSubgroups",
5259 Bi::SubgroupId => "gl_SubgroupID",
5260 Bi::SubgroupSize => "gl_SubgroupSize",
5261 Bi::SubgroupInvocationId => "gl_SubgroupInvocationID",
5262 // mesh
5263 // TODO: figure out how to map these to glsl things as glsl treats them as arrays
5264 Bi::CullPrimitive
5265 | Bi::PointIndex
5266 | Bi::LineIndices
5267 | Bi::TriangleIndices
5268 | Bi::MeshTaskSize
5269 | Bi::VertexCount
5270 | Bi::PrimitiveCount
5271 | Bi::Vertices
5272 | Bi::Primitives => {
5273 unimplemented!()
5274 }
5275 }
5276}
5277
5278/// Helper function that returns the string corresponding to the address space
5279const fn glsl_storage_qualifier(space: crate::AddressSpace) -> Option<&'static str> {
5280 use crate::AddressSpace as As;
5281
5282 match space {
5283 As::Function => None,
5284 As::Private => None,
5285 As::Storage { .. } => Some("buffer"),
5286 As::Uniform => Some("uniform"),
5287 As::Handle => Some("uniform"),
5288 As::WorkGroup => Some("shared"),
5289 As::PushConstant => Some("uniform"),
5290 As::TaskPayload => unreachable!(),
5291 }
5292}
5293
5294/// Helper function that returns the string corresponding to the glsl interpolation qualifier
5295const fn glsl_interpolation(interpolation: crate::Interpolation) -> &'static str {
5296 use crate::Interpolation as I;
5297
5298 match interpolation {
5299 I::Perspective => "smooth",
5300 I::Linear => "noperspective",
5301 I::Flat => "flat",
5302 }
5303}
5304
5305/// Return the GLSL auxiliary qualifier for the given sampling value.
5306const fn glsl_sampling(sampling: crate::Sampling) -> BackendResult<Option<&'static str>> {
5307 use crate::Sampling as S;
5308
5309 Ok(match sampling {
5310 S::First => return Err(Error::FirstSamplingNotSupported),
5311 S::Center | S::Either => None,
5312 S::Centroid => Some("centroid"),
5313 S::Sample => Some("sample"),
5314 })
5315}
5316
5317/// Helper function that returns the glsl dimension string of [`ImageDimension`](crate::ImageDimension)
5318const fn glsl_dimension(dim: crate::ImageDimension) -> &'static str {
5319 use crate::ImageDimension as IDim;
5320
5321 match dim {
5322 IDim::D1 => "1D",
5323 IDim::D2 => "2D",
5324 IDim::D3 => "3D",
5325 IDim::Cube => "Cube",
5326 }
5327}
5328
5329/// Helper function that returns the glsl storage format string of [`StorageFormat`](crate::StorageFormat)
5330fn glsl_storage_format(format: crate::StorageFormat) -> Result<&'static str, Error> {
5331 use crate::StorageFormat as Sf;
5332
5333 Ok(match format {
5334 Sf::R8Unorm => "r8",
5335 Sf::R8Snorm => "r8_snorm",
5336 Sf::R8Uint => "r8ui",
5337 Sf::R8Sint => "r8i",
5338 Sf::R16Uint => "r16ui",
5339 Sf::R16Sint => "r16i",
5340 Sf::R16Float => "r16f",
5341 Sf::Rg8Unorm => "rg8",
5342 Sf::Rg8Snorm => "rg8_snorm",
5343 Sf::Rg8Uint => "rg8ui",
5344 Sf::Rg8Sint => "rg8i",
5345 Sf::R32Uint => "r32ui",
5346 Sf::R32Sint => "r32i",
5347 Sf::R32Float => "r32f",
5348 Sf::Rg16Uint => "rg16ui",
5349 Sf::Rg16Sint => "rg16i",
5350 Sf::Rg16Float => "rg16f",
5351 Sf::Rgba8Unorm => "rgba8",
5352 Sf::Rgba8Snorm => "rgba8_snorm",
5353 Sf::Rgba8Uint => "rgba8ui",
5354 Sf::Rgba8Sint => "rgba8i",
5355 Sf::Rgb10a2Uint => "rgb10_a2ui",
5356 Sf::Rgb10a2Unorm => "rgb10_a2",
5357 Sf::Rg11b10Ufloat => "r11f_g11f_b10f",
5358 Sf::R64Uint => "r64ui",
5359 Sf::Rg32Uint => "rg32ui",
5360 Sf::Rg32Sint => "rg32i",
5361 Sf::Rg32Float => "rg32f",
5362 Sf::Rgba16Uint => "rgba16ui",
5363 Sf::Rgba16Sint => "rgba16i",
5364 Sf::Rgba16Float => "rgba16f",
5365 Sf::Rgba32Uint => "rgba32ui",
5366 Sf::Rgba32Sint => "rgba32i",
5367 Sf::Rgba32Float => "rgba32f",
5368 Sf::R16Unorm => "r16",
5369 Sf::R16Snorm => "r16_snorm",
5370 Sf::Rg16Unorm => "rg16",
5371 Sf::Rg16Snorm => "rg16_snorm",
5372 Sf::Rgba16Unorm => "rgba16",
5373 Sf::Rgba16Snorm => "rgba16_snorm",
5374
5375 Sf::Bgra8Unorm => {
5376 return Err(Error::Custom(
5377 "Support format BGRA8 is not implemented".into(),
5378 ))
5379 }
5380 })
5381}
5382
5383fn is_value_init_supported(module: &crate::Module, ty: Handle<crate::Type>) -> bool {
5384 match module.types[ty].inner {
5385 TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => true,
5386 TypeInner::Array { base, size, .. } => {
5387 size != crate::ArraySize::Dynamic && is_value_init_supported(module, base)
5388 }
5389 TypeInner::Struct { ref members, .. } => members
5390 .iter()
5391 .all(|member| is_value_init_supported(module, member.ty)),
5392 _ => false,
5393 }
5394}