naga/back/glsl/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
/*!
Backend for [GLSL][glsl] (OpenGL Shading Language).
The main structure is [`Writer`], it maintains internal state that is used
to output a [`Module`](crate::Module) into glsl
# Supported versions
### Core
- 330
- 400
- 410
- 420
- 430
- 450
### ES
- 300
- 310
[glsl]: https://www.khronos.org/registry/OpenGL/index_gl.php
*/
// GLSL is mostly a superset of C but it also removes some parts of it this is a list of relevant
// aspects for this backend.
//
// The most notable change is the introduction of the version preprocessor directive that must
// always be the first line of a glsl file and is written as
// `#version number profile`
// `number` is the version itself (i.e. 300) and `profile` is the
// shader profile we only support "core" and "es", the former is used in desktop applications and
// the later is used in embedded contexts, mobile devices and browsers. Each one as it's own
// versions (at the time of writing this the latest version for "core" is 460 and for "es" is 320)
//
// Other important preprocessor addition is the extension directive which is written as
// `#extension name: behaviour`
// Extensions provide increased features in a plugin fashion but they aren't required to be
// supported hence why they are called extensions, that's why `behaviour` is used it specifies
// whether the extension is strictly required or if it should only be enabled if needed. In our case
// when we use extensions we set behaviour to `require` always.
//
// The only thing that glsl removes that makes a difference are pointers.
//
// Additions that are relevant for the backend are the discard keyword, the introduction of
// vector, matrices, samplers, image types and functions that provide common shader operations
pub use features::Features;
use crate::{
back::{self, Baked},
proc::{self, ExpressionKindTracker, NameKey},
valid, Handle, ShaderStage, TypeInner,
};
use features::FeaturesManager;
use std::{
cmp::Ordering,
fmt::{self, Error as FmtError, Write},
mem,
};
use thiserror::Error;
/// Contains the features related code and the features querying method
mod features;
/// Contains a constant with a slice of all the reserved keywords RESERVED_KEYWORDS
mod keywords;
/// List of supported `core` GLSL versions.
pub const SUPPORTED_CORE_VERSIONS: &[u16] = &[140, 150, 330, 400, 410, 420, 430, 440, 450, 460];
/// List of supported `es` GLSL versions.
pub const SUPPORTED_ES_VERSIONS: &[u16] = &[300, 310, 320];
/// The suffix of the variable that will hold the calculated clamped level
/// of detail for bounds checking in `ImageLoad`
const CLAMPED_LOD_SUFFIX: &str = "_clamped_lod";
pub(crate) const MODF_FUNCTION: &str = "naga_modf";
pub(crate) const FREXP_FUNCTION: &str = "naga_frexp";
// Must match code in glsl_built_in
pub const FIRST_INSTANCE_BINDING: &str = "naga_vs_first_instance";
/// Mapping between resources and bindings.
pub type BindingMap = std::collections::BTreeMap<crate::ResourceBinding, u8>;
impl crate::AtomicFunction {
const fn to_glsl(self) -> &'static str {
match self {
Self::Add | Self::Subtract => "Add",
Self::And => "And",
Self::InclusiveOr => "Or",
Self::ExclusiveOr => "Xor",
Self::Min => "Min",
Self::Max => "Max",
Self::Exchange { compare: None } => "Exchange",
Self::Exchange { compare: Some(_) } => "", //TODO
}
}
}
impl crate::AddressSpace {
const fn is_buffer(&self) -> bool {
match *self {
crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => true,
_ => false,
}
}
/// Whether a variable with this address space can be initialized
const fn initializable(&self) -> bool {
match *self {
crate::AddressSpace::Function | crate::AddressSpace::Private => true,
crate::AddressSpace::WorkGroup
| crate::AddressSpace::Uniform
| crate::AddressSpace::Storage { .. }
| crate::AddressSpace::Handle
| crate::AddressSpace::PushConstant => false,
}
}
}
/// A GLSL version.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub enum Version {
/// `core` GLSL.
Desktop(u16),
/// `es` GLSL.
Embedded { version: u16, is_webgl: bool },
}
impl Version {
/// Create a new gles version
pub const fn new_gles(version: u16) -> Self {
Self::Embedded {
version,
is_webgl: false,
}
}
/// Returns true if self is `Version::Embedded` (i.e. is a es version)
const fn is_es(&self) -> bool {
match *self {
Version::Desktop(_) => false,
Version::Embedded { .. } => true,
}
}
/// Returns true if targeting WebGL
const fn is_webgl(&self) -> bool {
match *self {
Version::Desktop(_) => false,
Version::Embedded { is_webgl, .. } => is_webgl,
}
}
/// Checks the list of currently supported versions and returns true if it contains the
/// specified version
///
/// # Notes
/// As an invalid version number will never be added to the supported version list
/// so this also checks for version validity
fn is_supported(&self) -> bool {
match *self {
Version::Desktop(v) => SUPPORTED_CORE_VERSIONS.contains(&v),
Version::Embedded { version: v, .. } => SUPPORTED_ES_VERSIONS.contains(&v),
}
}
fn supports_io_locations(&self) -> bool {
*self >= Version::Desktop(330) || *self >= Version::new_gles(300)
}
/// Checks if the version supports all of the explicit layouts:
/// - `location=` qualifiers for bindings
/// - `binding=` qualifiers for resources
///
/// Note: `location=` for vertex inputs and fragment outputs is supported
/// unconditionally for GLES 300.
fn supports_explicit_locations(&self) -> bool {
*self >= Version::Desktop(420) || *self >= Version::new_gles(310)
}
fn supports_early_depth_test(&self) -> bool {
*self >= Version::Desktop(130) || *self >= Version::new_gles(310)
}
fn supports_std430_layout(&self) -> bool {
*self >= Version::Desktop(430) || *self >= Version::new_gles(310)
}
fn supports_fma_function(&self) -> bool {
*self >= Version::Desktop(400) || *self >= Version::new_gles(320)
}
fn supports_integer_functions(&self) -> bool {
*self >= Version::Desktop(400) || *self >= Version::new_gles(310)
}
fn supports_frexp_function(&self) -> bool {
*self >= Version::Desktop(400) || *self >= Version::new_gles(310)
}
fn supports_derivative_control(&self) -> bool {
*self >= Version::Desktop(450)
}
}
impl PartialOrd for Version {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match (*self, *other) {
(Version::Desktop(x), Version::Desktop(y)) => Some(x.cmp(&y)),
(Version::Embedded { version: x, .. }, Version::Embedded { version: y, .. }) => {
Some(x.cmp(&y))
}
_ => None,
}
}
}
impl fmt::Display for Version {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Version::Desktop(v) => write!(f, "{v} core"),
Version::Embedded { version: v, .. } => write!(f, "{v} es"),
}
}
}
bitflags::bitflags! {
/// Configuration flags for the [`Writer`].
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct WriterFlags: u32 {
/// Flip output Y and extend Z from (0, 1) to (-1, 1).
const ADJUST_COORDINATE_SPACE = 0x1;
/// Supports GL_EXT_texture_shadow_lod on the host, which provides
/// additional functions on shadows and arrays of shadows.
const TEXTURE_SHADOW_LOD = 0x2;
/// Supports ARB_shader_draw_parameters on the host, which provides
/// support for `gl_BaseInstanceARB`, `gl_BaseVertexARB`, `gl_DrawIDARB`, and `gl_DrawID`.
const DRAW_PARAMETERS = 0x4;
/// Include unused global variables, constants and functions. By default the output will exclude
/// global variables that are not used in the specified entrypoint (including indirect use),
/// all constant declarations, and functions that use excluded global variables.
const INCLUDE_UNUSED_ITEMS = 0x10;
/// Emit `PointSize` output builtin to vertex shaders, which is
/// required for drawing with `PointList` topology.
///
/// https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#built-in-language-variables
/// The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is measured in pixels.
/// If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.
const FORCE_POINT_SIZE = 0x20;
}
}
/// Configuration used in the [`Writer`].
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[cfg_attr(feature = "deserialize", serde(default))]
pub struct Options {
/// The GLSL version to be used.
pub version: Version,
/// Configuration flags for the [`Writer`].
pub writer_flags: WriterFlags,
/// Map of resources association to binding locations.
pub binding_map: BindingMap,
/// Should workgroup variables be zero initialized (by polyfilling)?
pub zero_initialize_workgroup_memory: bool,
}
impl Default for Options {
fn default() -> Self {
Options {
version: Version::new_gles(310),
writer_flags: WriterFlags::ADJUST_COORDINATE_SPACE,
binding_map: BindingMap::default(),
zero_initialize_workgroup_memory: true,
}
}
}
/// A subset of options meant to be changed per pipeline.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct PipelineOptions {
/// The stage of the entry point.
pub shader_stage: ShaderStage,
/// The name of the entry point.
///
/// If no entry point that matches is found while creating a [`Writer`], a error will be thrown.
pub entry_point: String,
/// How many views to render to, if doing multiview rendering.
pub multiview: Option<std::num::NonZeroU32>,
}
#[derive(Debug)]
pub struct VaryingLocation {
/// The location of the global.
/// This corresponds to `layout(location = ..)` in GLSL.
pub location: u32,
/// The index which can be used for dual source blending.
/// This corresponds to `layout(index = ..)` in GLSL.
pub index: u32,
}
/// Reflection info for texture mappings and uniforms.
#[derive(Debug)]
pub struct ReflectionInfo {
/// Mapping between texture names and variables/samplers.
pub texture_mapping: crate::FastHashMap<String, TextureMapping>,
/// Mapping between uniform variables and names.
pub uniforms: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
/// Mapping between names and attribute locations.
pub varying: crate::FastHashMap<String, VaryingLocation>,
/// List of push constant items in the shader.
pub push_constant_items: Vec<PushConstantItem>,
}
/// Mapping between a texture and its sampler, if it exists.
///
/// GLSL pre-Vulkan has no concept of separate textures and samplers. Instead, everything is a
/// `gsamplerN` where `g` is the scalar type and `N` is the dimension. But naga uses separate textures
/// and samplers in the IR, so the backend produces a [`FastHashMap`](crate::FastHashMap) with the texture name
/// as a key and a [`TextureMapping`] as a value. This way, the user knows where to bind.
///
/// [`Storage`](crate::ImageClass::Storage) images produce `gimageN` and don't have an associated sampler,
/// so the [`sampler`](Self::sampler) field will be [`None`].
#[derive(Debug, Clone)]
pub struct TextureMapping {
/// Handle to the image global variable.
pub texture: Handle<crate::GlobalVariable>,
/// Handle to the associated sampler global variable, if it exists.
pub sampler: Option<Handle<crate::GlobalVariable>>,
}
/// All information to bind a single uniform value to the shader.
///
/// Push constants are emulated using traditional uniforms in OpenGL.
///
/// These are composed of a set of primitives (scalar, vector, matrix) that
/// are given names. Because they are not backed by the concept of a buffer,
/// we must do the work of calculating the offset of each primitive in the
/// push constant block.
#[derive(Debug, Clone)]
pub struct PushConstantItem {
/// GL uniform name for the item. This name is the same as if you were
/// to access it directly from a GLSL shader.
///
/// The with the following example, the following names will be generated,
/// one name per GLSL uniform.
///
/// ```glsl
/// struct InnerStruct {
/// value: f32,
/// }
///
/// struct PushConstant {
/// InnerStruct inner;
/// vec4 array[2];
/// }
///
/// uniform PushConstants _push_constant_binding_cs;
/// ```
///
/// ```text
/// - _push_constant_binding_cs.inner.value
/// - _push_constant_binding_cs.array[0]
/// - _push_constant_binding_cs.array[1]
/// ```
///
pub access_path: String,
/// Type of the uniform. This will only ever be a scalar, vector, or matrix.
pub ty: Handle<crate::Type>,
/// The offset in the push constant memory block this uniform maps to.
///
/// The size of the uniform can be derived from the type.
pub offset: u32,
}
/// Helper structure that generates a number
#[derive(Default)]
struct IdGenerator(u32);
impl IdGenerator {
/// Generates a number that's guaranteed to be unique for this `IdGenerator`
fn generate(&mut self) -> u32 {
// It's just an increasing number but it does the job
let ret = self.0;
self.0 += 1;
ret
}
}
/// Assorted options needed for generating varyings.
#[derive(Clone, Copy)]
struct VaryingOptions {
output: bool,
targeting_webgl: bool,
draw_parameters: bool,
}
impl VaryingOptions {
const fn from_writer_options(options: &Options, output: bool) -> Self {
Self {
output,
targeting_webgl: options.version.is_webgl(),
draw_parameters: options.writer_flags.contains(WriterFlags::DRAW_PARAMETERS),
}
}
}
/// Helper wrapper used to get a name for a varying
///
/// Varying have different naming schemes depending on their binding:
/// - Varyings with builtin bindings get the from [`glsl_built_in`].
/// - Varyings with location bindings are named `_S_location_X` where `S` is a
/// prefix identifying which pipeline stage the varying connects, and `X` is
/// the location.
struct VaryingName<'a> {
binding: &'a crate::Binding,
stage: ShaderStage,
options: VaryingOptions,
}
impl fmt::Display for VaryingName<'_> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self.binding {
crate::Binding::Location {
second_blend_source: true,
..
} => {
write!(f, "_fs2p_location1",)
}
crate::Binding::Location { location, .. } => {
let prefix = match (self.stage, self.options.output) {
(ShaderStage::Compute, _) => unreachable!(),
// pipeline to vertex
(ShaderStage::Vertex, false) => "p2vs",
// vertex to fragment
(ShaderStage::Vertex, true) | (ShaderStage::Fragment, false) => "vs2fs",
// fragment to pipeline
(ShaderStage::Fragment, true) => "fs2p",
};
write!(f, "_{prefix}_location{location}",)
}
crate::Binding::BuiltIn(built_in) => {
write!(f, "{}", glsl_built_in(built_in, self.options))
}
}
}
}
impl ShaderStage {
const fn to_str(self) -> &'static str {
match self {
ShaderStage::Compute => "cs",
ShaderStage::Fragment => "fs",
ShaderStage::Vertex => "vs",
}
}
}
/// Shorthand result used internally by the backend
type BackendResult<T = ()> = Result<T, Error>;
/// A GLSL compilation error.
#[derive(Debug, Error)]
pub enum Error {
/// A error occurred while writing to the output.
#[error("Format error")]
FmtError(#[from] FmtError),
/// The specified [`Version`] doesn't have all required [`Features`].
///
/// Contains the missing [`Features`].
#[error("The selected version doesn't support {0:?}")]
MissingFeatures(Features),
/// [`AddressSpace::PushConstant`](crate::AddressSpace::PushConstant) was used more than
/// once in the entry point, which isn't supported.
#[error("Multiple push constants aren't supported")]
MultiplePushConstants,
/// The specified [`Version`] isn't supported.
#[error("The specified version isn't supported")]
VersionNotSupported,
/// The entry point couldn't be found.
#[error("The requested entry point couldn't be found")]
EntryPointNotFound,
/// A call was made to an unsupported external.
#[error("A call was made to an unsupported external: {0}")]
UnsupportedExternal(String),
/// A scalar with an unsupported width was requested.
#[error("A scalar with an unsupported width was requested: {0:?}")]
UnsupportedScalar(crate::Scalar),
/// A image was used with multiple samplers, which isn't supported.
#[error("A image was used with multiple samplers")]
ImageMultipleSamplers,
#[error("{0}")]
Custom(String),
#[error("overrides should not be present at this stage")]
Override,
/// [`crate::Sampling::First`] is unsupported.
#[error("`{:?}` sampling is unsupported", crate::Sampling::First)]
FirstSamplingNotSupported,
}
/// Binary operation with a different logic on the GLSL side.
enum BinaryOperation {
/// Vector comparison should use the function like `greaterThan()`, etc.
VectorCompare,
/// Vector component wise operation; used to polyfill unsupported ops like `|` and `&` for `bvecN`'s
VectorComponentWise,
/// GLSL `%` is SPIR-V `OpUMod/OpSMod` and `mod()` is `OpFMod`, but [`BinaryOperator::Modulo`](crate::BinaryOperator::Modulo) is `OpFRem`.
Modulo,
/// Any plain operation. No additional logic required.
Other,
}
/// Writer responsible for all code generation.
pub struct Writer<'a, W> {
// Inputs
/// The module being written.
module: &'a crate::Module,
/// The module analysis.
info: &'a valid::ModuleInfo,
/// The output writer.
out: W,
/// User defined configuration to be used.
options: &'a Options,
/// The bound checking policies to be used
policies: proc::BoundsCheckPolicies,
// Internal State
/// Features manager used to store all the needed features and write them.
features: FeaturesManager,
namer: proc::Namer,
/// A map with all the names needed for writing the module
/// (generated by a [`Namer`](crate::proc::Namer)).
names: crate::FastHashMap<NameKey, String>,
/// A map with the names of global variables needed for reflections.
reflection_names_globals: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
/// The selected entry point.
entry_point: &'a crate::EntryPoint,
/// The index of the selected entry point.
entry_point_idx: proc::EntryPointIndex,
/// A generator for unique block numbers.
block_id: IdGenerator,
/// Set of expressions that have associated temporary variables.
named_expressions: crate::NamedExpressions,
/// Set of expressions that need to be baked to avoid unnecessary repetition in output
need_bake_expressions: back::NeedBakeExpressions,
/// Information about nesting of loops and switches.
///
/// Used for forwarding continue statements in switches that have been
/// transformed to `do {} while(false);` loops.
continue_ctx: back::continue_forward::ContinueCtx,
/// How many views to render to, if doing multiview rendering.
multiview: Option<std::num::NonZeroU32>,
/// Mapping of varying variables to their location. Needed for reflections.
varying: crate::FastHashMap<String, VaryingLocation>,
}
impl<'a, W: Write> Writer<'a, W> {
/// Creates a new [`Writer`] instance.
///
/// # Errors
/// - If the version specified is invalid or supported.
/// - If the entry point couldn't be found in the module.
/// - If the version specified doesn't support some used features.
pub fn new(
out: W,
module: &'a crate::Module,
info: &'a valid::ModuleInfo,
options: &'a Options,
pipeline_options: &'a PipelineOptions,
policies: proc::BoundsCheckPolicies,
) -> Result<Self, Error> {
if !module.overrides.is_empty() {
return Err(Error::Override);
}
// Check if the requested version is supported
if !options.version.is_supported() {
log::error!("Version {}", options.version);
return Err(Error::VersionNotSupported);
}
// Try to find the entry point and corresponding index
let ep_idx = module
.entry_points
.iter()
.position(|ep| {
pipeline_options.shader_stage == ep.stage && pipeline_options.entry_point == ep.name
})
.ok_or(Error::EntryPointNotFound)?;
// Generate a map with names required to write the module
let mut names = crate::FastHashMap::default();
let mut namer = proc::Namer::default();
namer.reset(
module,
keywords::RESERVED_KEYWORDS,
&[],
&[],
&[
"gl_", // all GL built-in variables
"_group", // all normal bindings
"_push_constant_binding_", // all push constant bindings
],
&mut names,
);
// Build the instance
let mut this = Self {
module,
info,
out,
options,
policies,
namer,
features: FeaturesManager::new(),
names,
reflection_names_globals: crate::FastHashMap::default(),
entry_point: &module.entry_points[ep_idx],
entry_point_idx: ep_idx as u16,
multiview: pipeline_options.multiview,
block_id: IdGenerator::default(),
named_expressions: Default::default(),
need_bake_expressions: Default::default(),
continue_ctx: back::continue_forward::ContinueCtx::default(),
varying: Default::default(),
};
// Find all features required to print this module
this.collect_required_features()?;
Ok(this)
}
/// Writes the [`Module`](crate::Module) as glsl to the output
///
/// # Notes
/// If an error occurs while writing, the output might have been written partially
///
/// # Panics
/// Might panic if the module is invalid
pub fn write(&mut self) -> Result<ReflectionInfo, Error> {
// We use `writeln!(self.out)` throughout the write to add newlines
// to make the output more readable
let es = self.options.version.is_es();
// Write the version (It must be the first thing or it isn't a valid glsl output)
writeln!(self.out, "#version {}", self.options.version)?;
// Write all the needed extensions
//
// This used to be the last thing being written as it allowed to search for features while
// writing the module saving some loops but some older versions (420 or less) required the
// extensions to appear before being used, even though extensions are part of the
// preprocessor not the processor ¯\_(ツ)_/¯
self.features.write(self.options, &mut self.out)?;
// glsl es requires a precision to be specified for floats and ints
// TODO: Should this be user configurable?
if es {
writeln!(self.out)?;
writeln!(self.out, "precision highp float;")?;
writeln!(self.out, "precision highp int;")?;
writeln!(self.out)?;
}
if self.entry_point.stage == ShaderStage::Compute {
let workgroup_size = self.entry_point.workgroup_size;
writeln!(
self.out,
"layout(local_size_x = {}, local_size_y = {}, local_size_z = {}) in;",
workgroup_size[0], workgroup_size[1], workgroup_size[2]
)?;
writeln!(self.out)?;
}
if self.entry_point.stage == ShaderStage::Vertex
&& !self
.options
.writer_flags
.contains(WriterFlags::DRAW_PARAMETERS)
&& self.features.contains(Features::INSTANCE_INDEX)
{
writeln!(self.out, "uniform uint {FIRST_INSTANCE_BINDING};")?;
writeln!(self.out)?;
}
// Enable early depth tests if needed
if let Some(depth_test) = self.entry_point.early_depth_test {
// If early depth test is supported for this version of GLSL
if self.options.version.supports_early_depth_test() {
writeln!(self.out, "layout(early_fragment_tests) in;")?;
if let Some(conservative) = depth_test.conservative {
use crate::ConservativeDepth as Cd;
let depth = match conservative {
Cd::GreaterEqual => "greater",
Cd::LessEqual => "less",
Cd::Unchanged => "unchanged",
};
writeln!(self.out, "layout (depth_{depth}) out float gl_FragDepth;")?;
}
writeln!(self.out)?;
} else {
log::warn!(
"Early depth testing is not supported for this version of GLSL: {}",
self.options.version
);
}
}
if self.entry_point.stage == ShaderStage::Vertex && self.options.version.is_webgl() {
if let Some(multiview) = self.multiview.as_ref() {
writeln!(self.out, "layout(num_views = {multiview}) in;")?;
writeln!(self.out)?;
}
}
// Write struct types.
//
// This are always ordered because the IR is structured in a way that
// you can't make a struct without adding all of its members first.
for (handle, ty) in self.module.types.iter() {
if let TypeInner::Struct { ref members, .. } = ty.inner {
// Structures ending with runtime-sized arrays can only be
// rendered as shader storage blocks in GLSL, not stand-alone
// struct types.
if !self.module.types[members.last().unwrap().ty]
.inner
.is_dynamically_sized(&self.module.types)
{
let name = &self.names[&NameKey::Type(handle)];
write!(self.out, "struct {name} ")?;
self.write_struct_body(handle, members)?;
writeln!(self.out, ";")?;
}
}
}
// Write functions to create special types.
for (type_key, struct_ty) in self.module.special_types.predeclared_types.iter() {
match type_key {
&crate::PredeclaredType::ModfResult { size, scalar }
| &crate::PredeclaredType::FrexpResult { size, scalar } => {
let arg_type_name_owner;
let arg_type_name = if let Some(size) = size {
arg_type_name_owner = format!(
"{}vec{}",
if scalar.width == 8 { "d" } else { "" },
size as u8
);
&arg_type_name_owner
} else if scalar.width == 8 {
"double"
} else {
"float"
};
let other_type_name_owner;
let (defined_func_name, called_func_name, other_type_name) =
if matches!(type_key, &crate::PredeclaredType::ModfResult { .. }) {
(MODF_FUNCTION, "modf", arg_type_name)
} else {
let other_type_name = if let Some(size) = size {
other_type_name_owner = format!("ivec{}", size as u8);
&other_type_name_owner
} else {
"int"
};
(FREXP_FUNCTION, "frexp", other_type_name)
};
let struct_name = &self.names[&NameKey::Type(*struct_ty)];
writeln!(self.out)?;
if !self.options.version.supports_frexp_function()
&& matches!(type_key, &crate::PredeclaredType::FrexpResult { .. })
{
writeln!(
self.out,
"{struct_name} {defined_func_name}({arg_type_name} arg) {{
{other_type_name} other = arg == {arg_type_name}(0) ? {other_type_name}(0) : {other_type_name}({arg_type_name}(1) + log2(arg));
{arg_type_name} fract = arg * exp2({arg_type_name}(-other));
return {struct_name}(fract, other);
}}",
)?;
} else {
writeln!(
self.out,
"{struct_name} {defined_func_name}({arg_type_name} arg) {{
{other_type_name} other;
{arg_type_name} fract = {called_func_name}(arg, other);
return {struct_name}(fract, other);
}}",
)?;
}
}
&crate::PredeclaredType::AtomicCompareExchangeWeakResult { .. } => {}
}
}
// Write all named constants
let mut constants = self
.module
.constants
.iter()
.filter(|&(_, c)| c.name.is_some())
.peekable();
while let Some((handle, _)) = constants.next() {
self.write_global_constant(handle)?;
// Add extra newline for readability on last iteration
if constants.peek().is_none() {
writeln!(self.out)?;
}
}
let ep_info = self.info.get_entry_point(self.entry_point_idx as usize);
// Write the globals
//
// Unless explicitly disabled with WriterFlags::INCLUDE_UNUSED_ITEMS,
// we filter all globals that aren't used by the selected entry point as they might be
// interfere with each other (i.e. two globals with the same location but different with
// different classes)
let include_unused = self
.options
.writer_flags
.contains(WriterFlags::INCLUDE_UNUSED_ITEMS);
for (handle, global) in self.module.global_variables.iter() {
let is_unused = ep_info[handle].is_empty();
if !include_unused && is_unused {
continue;
}
match self.module.types[global.ty].inner {
// We treat images separately because they might require
// writing the storage format
TypeInner::Image {
mut dim,
arrayed,
class,
} => {
// Gather the storage format if needed
let storage_format_access = match self.module.types[global.ty].inner {
TypeInner::Image {
class: crate::ImageClass::Storage { format, access },
..
} => Some((format, access)),
_ => None,
};
if dim == crate::ImageDimension::D1 && es {
dim = crate::ImageDimension::D2
}
// Gether the location if needed
let layout_binding = if self.options.version.supports_explicit_locations() {
let br = global.binding.as_ref().unwrap();
self.options.binding_map.get(br).cloned()
} else {
None
};
// Write all the layout qualifiers
if layout_binding.is_some() || storage_format_access.is_some() {
write!(self.out, "layout(")?;
if let Some(binding) = layout_binding {
write!(self.out, "binding = {binding}")?;
}
if let Some((format, _)) = storage_format_access {
let format_str = glsl_storage_format(format)?;
let separator = match layout_binding {
Some(_) => ",",
None => "",
};
write!(self.out, "{separator}{format_str}")?;
}
write!(self.out, ") ")?;
}
if let Some((_, access)) = storage_format_access {
self.write_storage_access(access)?;
}
// All images in glsl are `uniform`
// The trailing space is important
write!(self.out, "uniform ")?;
// write the type
//
// This is way we need the leading space because `write_image_type` doesn't add
// any spaces at the beginning or end
self.write_image_type(dim, arrayed, class)?;
// Finally write the name and end the global with a `;`
// The leading space is important
let global_name = self.get_global_name(handle, global);
writeln!(self.out, " {global_name};")?;
writeln!(self.out)?;
self.reflection_names_globals.insert(handle, global_name);
}
// glsl has no concept of samplers so we just ignore it
TypeInner::Sampler { .. } => continue,
// All other globals are written by `write_global`
_ => {
self.write_global(handle, global)?;
// Add a newline (only for readability)
writeln!(self.out)?;
}
}
}
for arg in self.entry_point.function.arguments.iter() {
self.write_varying(arg.binding.as_ref(), arg.ty, false)?;
}
if let Some(ref result) = self.entry_point.function.result {
self.write_varying(result.binding.as_ref(), result.ty, true)?;
}
writeln!(self.out)?;
// Write all regular functions
for (handle, function) in self.module.functions.iter() {
// Check that the function doesn't use globals that aren't supported
// by the current entry point
if !include_unused && !ep_info.dominates_global_use(&self.info[handle]) {
continue;
}
let fun_info = &self.info[handle];
// Skip functions that that are not compatible with this entry point's stage.
//
// When validation is enabled, it rejects modules whose entry points try to call
// incompatible functions, so if we got this far, then any functions incompatible
// with our selected entry point must not be used.
//
// When validation is disabled, `fun_info.available_stages` is always just
// `ShaderStages::all()`, so this will write all functions in the module, and
// the downstream GLSL compiler will catch any problems.
if !fun_info.available_stages.contains(ep_info.available_stages) {
continue;
}
// Write the function
self.write_function(back::FunctionType::Function(handle), function, fun_info)?;
writeln!(self.out)?;
}
self.write_function(
back::FunctionType::EntryPoint(self.entry_point_idx),
&self.entry_point.function,
ep_info,
)?;
// Add newline at the end of file
writeln!(self.out)?;
// Collect all reflection info and return it to the user
self.collect_reflection_info()
}
fn write_array_size(
&mut self,
base: Handle<crate::Type>,
size: crate::ArraySize,
) -> BackendResult {
write!(self.out, "[")?;
// Write the array size
// Writes nothing if `ArraySize::Dynamic`
match size {
crate::ArraySize::Constant(size) => {
write!(self.out, "{size}")?;
}
crate::ArraySize::Pending(_) => unreachable!(),
crate::ArraySize::Dynamic => (),
}
write!(self.out, "]")?;
if let TypeInner::Array {
base: next_base,
size: next_size,
..
} = self.module.types[base].inner
{
self.write_array_size(next_base, next_size)?;
}
Ok(())
}
/// Helper method used to write value types
///
/// # Notes
/// Adds no trailing or leading whitespace
fn write_value_type(&mut self, inner: &TypeInner) -> BackendResult {
match *inner {
// Scalars are simple we just get the full name from `glsl_scalar`
TypeInner::Scalar(scalar)
| TypeInner::Atomic(scalar)
| TypeInner::ValuePointer {
size: None,
scalar,
space: _,
} => write!(self.out, "{}", glsl_scalar(scalar)?.full)?,
// Vectors are just `gvecN` where `g` is the scalar prefix and `N` is the vector size
TypeInner::Vector { size, scalar }
| TypeInner::ValuePointer {
size: Some(size),
scalar,
space: _,
} => write!(self.out, "{}vec{}", glsl_scalar(scalar)?.prefix, size as u8)?,
// Matrices are written with `gmatMxN` where `g` is the scalar prefix (only floats and
// doubles are allowed), `M` is the columns count and `N` is the rows count
//
// glsl supports a matrix shorthand `gmatN` where `N` = `M` but it doesn't justify the
// extra branch to write matrices this way
TypeInner::Matrix {
columns,
rows,
scalar,
} => write!(
self.out,
"{}mat{}x{}",
glsl_scalar(scalar)?.prefix,
columns as u8,
rows as u8
)?,
// GLSL arrays are written as `type name[size]`
// Here we only write the size of the array i.e. `[size]`
// Base `type` and `name` should be written outside
TypeInner::Array { base, size, .. } => self.write_array_size(base, size)?,
// Write all variants instead of `_` so that if new variants are added a
// no exhaustiveness error is thrown
TypeInner::Pointer { .. }
| TypeInner::Struct { .. }
| TypeInner::Image { .. }
| TypeInner::Sampler { .. }
| TypeInner::AccelerationStructure
| TypeInner::RayQuery
| TypeInner::BindingArray { .. } => {
return Err(Error::Custom(format!("Unable to write type {inner:?}")))
}
}
Ok(())
}
/// Helper method used to write non image/sampler types
///
/// # Notes
/// Adds no trailing or leading whitespace
fn write_type(&mut self, ty: Handle<crate::Type>) -> BackendResult {
match self.module.types[ty].inner {
// glsl has no pointer types so just write types as normal and loads are skipped
TypeInner::Pointer { base, .. } => self.write_type(base),
// glsl structs are written as just the struct name
TypeInner::Struct { .. } => {
// Get the struct name
let name = &self.names[&NameKey::Type(ty)];
write!(self.out, "{name}")?;
Ok(())
}
// glsl array has the size separated from the base type
TypeInner::Array { base, .. } => self.write_type(base),
ref other => self.write_value_type(other),
}
}
/// Helper method to write a image type
///
/// # Notes
/// Adds no leading or trailing whitespace
fn write_image_type(
&mut self,
dim: crate::ImageDimension,
arrayed: bool,
class: crate::ImageClass,
) -> BackendResult {
// glsl images consist of four parts the scalar prefix, the image "type", the dimensions
// and modifiers
//
// There exists two image types
// - sampler - for sampled images
// - image - for storage images
//
// There are three possible modifiers that can be used together and must be written in
// this order to be valid
// - MS - used if it's a multisampled image
// - Array - used if it's an image array
// - Shadow - used if it's a depth image
use crate::ImageClass as Ic;
use crate::Scalar as S;
let float = S {
kind: crate::ScalarKind::Float,
width: 4,
};
let (base, scalar, ms, comparison) = match class {
Ic::Sampled { kind, multi: true } => ("sampler", S { kind, width: 4 }, "MS", ""),
Ic::Sampled { kind, multi: false } => ("sampler", S { kind, width: 4 }, "", ""),
Ic::Depth { multi: true } => ("sampler", float, "MS", ""),
Ic::Depth { multi: false } => ("sampler", float, "", "Shadow"),
Ic::Storage { format, .. } => ("image", format.into(), "", ""),
};
let precision = if self.options.version.is_es() {
"highp "
} else {
""
};
write!(
self.out,
"{}{}{}{}{}{}{}",
precision,
glsl_scalar(scalar)?.prefix,
base,
glsl_dimension(dim),
ms,
if arrayed { "Array" } else { "" },
comparison
)?;
Ok(())
}
/// Helper method used to write non images/sampler globals
///
/// # Notes
/// Adds a newline
///
/// # Panics
/// If the global has type sampler
fn write_global(
&mut self,
handle: Handle<crate::GlobalVariable>,
global: &crate::GlobalVariable,
) -> BackendResult {
if self.options.version.supports_explicit_locations() {
if let Some(ref br) = global.binding {
match self.options.binding_map.get(br) {
Some(binding) => {
let layout = match global.space {
crate::AddressSpace::Storage { .. } => {
if self.options.version.supports_std430_layout() {
"std430, "
} else {
"std140, "
}
}
crate::AddressSpace::Uniform => "std140, ",
_ => "",
};
write!(self.out, "layout({layout}binding = {binding}) ")?
}
None => {
log::debug!("unassigned binding for {:?}", global.name);
if let crate::AddressSpace::Storage { .. } = global.space {
if self.options.version.supports_std430_layout() {
write!(self.out, "layout(std430) ")?
}
}
}
}
}
}
if let crate::AddressSpace::Storage { access } = global.space {
self.write_storage_access(access)?;
}
if let Some(storage_qualifier) = glsl_storage_qualifier(global.space) {
write!(self.out, "{storage_qualifier} ")?;
}
match global.space {
crate::AddressSpace::Private => {
self.write_simple_global(handle, global)?;
}
crate::AddressSpace::WorkGroup => {
self.write_simple_global(handle, global)?;
}
crate::AddressSpace::PushConstant => {
self.write_simple_global(handle, global)?;
}
crate::AddressSpace::Uniform => {
self.write_interface_block(handle, global)?;
}
crate::AddressSpace::Storage { .. } => {
self.write_interface_block(handle, global)?;
}
// A global variable in the `Function` address space is a
// contradiction in terms.
crate::AddressSpace::Function => unreachable!(),
// Textures and samplers are handled directly in `Writer::write`.
crate::AddressSpace::Handle => unreachable!(),
}
Ok(())
}
fn write_simple_global(
&mut self,
handle: Handle<crate::GlobalVariable>,
global: &crate::GlobalVariable,
) -> BackendResult {
self.write_type(global.ty)?;
write!(self.out, " ")?;
self.write_global_name(handle, global)?;
if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
self.write_array_size(base, size)?;
}
if global.space.initializable() && is_value_init_supported(self.module, global.ty) {
write!(self.out, " = ")?;
if let Some(init) = global.init {
self.write_const_expr(init)?;
} else {
self.write_zero_init_value(global.ty)?;
}
}
writeln!(self.out, ";")?;
if let crate::AddressSpace::PushConstant = global.space {
let global_name = self.get_global_name(handle, global);
self.reflection_names_globals.insert(handle, global_name);
}
Ok(())
}
/// Write an interface block for a single Naga global.
///
/// Write `block_name { members }`. Since `block_name` must be unique
/// between blocks and structs, we add `_block_ID` where `ID` is a
/// `IdGenerator` generated number. Write `members` in the same way we write
/// a struct's members.
fn write_interface_block(
&mut self,
handle: Handle<crate::GlobalVariable>,
global: &crate::GlobalVariable,
) -> BackendResult {
// Write the block name, it's just the struct name appended with `_block_ID`
let ty_name = &self.names[&NameKey::Type(global.ty)];
let block_name = format!(
"{}_block_{}{:?}",
// avoid double underscores as they are reserved in GLSL
ty_name.trim_end_matches('_'),
self.block_id.generate(),
self.entry_point.stage,
);
write!(self.out, "{block_name} ")?;
self.reflection_names_globals.insert(handle, block_name);
match self.module.types[global.ty].inner {
TypeInner::Struct { ref members, .. }
if self.module.types[members.last().unwrap().ty]
.inner
.is_dynamically_sized(&self.module.types) =>
{
// Structs with dynamically sized arrays must have their
// members lifted up as members of the interface block. GLSL
// can't write such struct types anyway.
self.write_struct_body(global.ty, members)?;
write!(self.out, " ")?;
self.write_global_name(handle, global)?;
}
_ => {
// A global of any other type is written as the sole member
// of the interface block. Since the interface block is
// anonymous, this becomes visible in the global scope.
write!(self.out, "{{ ")?;
self.write_type(global.ty)?;
write!(self.out, " ")?;
self.write_global_name(handle, global)?;
if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
self.write_array_size(base, size)?;
}
write!(self.out, "; }}")?;
}
}
writeln!(self.out, ";")?;
Ok(())
}
/// Helper method used to find which expressions of a given function require baking
///
/// # Notes
/// Clears `need_bake_expressions` set before adding to it
fn update_expressions_to_bake(&mut self, func: &crate::Function, info: &valid::FunctionInfo) {
use crate::Expression;
self.need_bake_expressions.clear();
for (fun_handle, expr) in func.expressions.iter() {
let expr_info = &info[fun_handle];
let min_ref_count = func.expressions[fun_handle].bake_ref_count();
if min_ref_count <= expr_info.ref_count {
self.need_bake_expressions.insert(fun_handle);
}
let inner = expr_info.ty.inner_with(&self.module.types);
if let Expression::Math {
fun,
arg,
arg1,
arg2,
..
} = *expr
{
match fun {
crate::MathFunction::Dot => {
// if the expression is a Dot product with integer arguments,
// then the args needs baking as well
if let TypeInner::Scalar(crate::Scalar {
kind: crate::ScalarKind::Sint | crate::ScalarKind::Uint,
..
}) = *inner
{
self.need_bake_expressions.insert(arg);
self.need_bake_expressions.insert(arg1.unwrap());
}
}
crate::MathFunction::Pack4xI8
| crate::MathFunction::Pack4xU8
| crate::MathFunction::Unpack4xI8
| crate::MathFunction::Unpack4xU8
| crate::MathFunction::QuantizeToF16 => {
self.need_bake_expressions.insert(arg);
}
crate::MathFunction::ExtractBits => {
// Only argument 1 is re-used.
self.need_bake_expressions.insert(arg1.unwrap());
}
crate::MathFunction::InsertBits => {
// Only argument 2 is re-used.
self.need_bake_expressions.insert(arg2.unwrap());
}
crate::MathFunction::CountLeadingZeros => {
if let Some(crate::ScalarKind::Sint) = inner.scalar_kind() {
self.need_bake_expressions.insert(arg);
}
}
_ => {}
}
}
}
}
/// Helper method used to get a name for a global
///
/// Globals have different naming schemes depending on their binding:
/// - Globals without bindings use the name from the [`Namer`](crate::proc::Namer)
/// - Globals with resource binding are named `_group_X_binding_Y` where `X`
/// is the group and `Y` is the binding
fn get_global_name(
&self,
handle: Handle<crate::GlobalVariable>,
global: &crate::GlobalVariable,
) -> String {
match (&global.binding, global.space) {
(&Some(ref br), _) => {
format!(
"_group_{}_binding_{}_{}",
br.group,
br.binding,
self.entry_point.stage.to_str()
)
}
(&None, crate::AddressSpace::PushConstant) => {
format!("_push_constant_binding_{}", self.entry_point.stage.to_str())
}
(&None, _) => self.names[&NameKey::GlobalVariable(handle)].clone(),
}
}
/// Helper method used to write a name for a global without additional heap allocation
fn write_global_name(
&mut self,
handle: Handle<crate::GlobalVariable>,
global: &crate::GlobalVariable,
) -> BackendResult {
match (&global.binding, global.space) {
(&Some(ref br), _) => write!(
self.out,
"_group_{}_binding_{}_{}",
br.group,
br.binding,
self.entry_point.stage.to_str()
)?,
(&None, crate::AddressSpace::PushConstant) => write!(
self.out,
"_push_constant_binding_{}",
self.entry_point.stage.to_str()
)?,
(&None, _) => write!(
self.out,
"{}",
&self.names[&NameKey::GlobalVariable(handle)]
)?,
}
Ok(())
}
/// Write a GLSL global that will carry a Naga entry point's argument or return value.
///
/// A Naga entry point's arguments and return value are rendered in GLSL as
/// variables at global scope with the `in` and `out` storage qualifiers.
/// The code we generate for `main` loads from all the `in` globals into
/// appropriately named locals. Before it returns, `main` assigns the
/// components of its return value into all the `out` globals.
///
/// This function writes a declaration for one such GLSL global,
/// representing a value passed into or returned from [`self.entry_point`]
/// that has a [`Location`] binding. The global's name is generated based on
/// the location index and the shader stages being connected; see
/// [`VaryingName`]. This means we don't need to know the names of
/// arguments, just their types and bindings.
///
/// Emit nothing for entry point arguments or return values with [`BuiltIn`]
/// bindings; `main` will read from or assign to the appropriate GLSL
/// special variable; these are pre-declared. As an exception, we do declare
/// `gl_Position` or `gl_FragCoord` with the `invariant` qualifier if
/// needed.
///
/// Use `output` together with [`self.entry_point.stage`] to determine which
/// shader stages are being connected, and choose the `in` or `out` storage
/// qualifier.
///
/// [`self.entry_point`]: Writer::entry_point
/// [`self.entry_point.stage`]: crate::EntryPoint::stage
/// [`Location`]: crate::Binding::Location
/// [`BuiltIn`]: crate::Binding::BuiltIn
fn write_varying(
&mut self,
binding: Option<&crate::Binding>,
ty: Handle<crate::Type>,
output: bool,
) -> Result<(), Error> {
// For a struct, emit a separate global for each member with a binding.
if let TypeInner::Struct { ref members, .. } = self.module.types[ty].inner {
for member in members {
self.write_varying(member.binding.as_ref(), member.ty, output)?;
}
return Ok(());
}
let binding = match binding {
None => return Ok(()),
Some(binding) => binding,
};
let (location, interpolation, sampling, second_blend_source) = match *binding {
crate::Binding::Location {
location,
interpolation,
sampling,
second_blend_source,
} => (location, interpolation, sampling, second_blend_source),
crate::Binding::BuiltIn(built_in) => {
if let crate::BuiltIn::Position { invariant: true } = built_in {
match (self.options.version, self.entry_point.stage) {
(
Version::Embedded {
version: 300,
is_webgl: true,
},
ShaderStage::Fragment,
) => {
// `invariant gl_FragCoord` is not allowed in WebGL2 and possibly
// OpenGL ES in general (waiting on confirmation).
//
// See https://github.com/KhronosGroup/WebGL/issues/3518
}
_ => {
writeln!(
self.out,
"invariant {};",
glsl_built_in(
built_in,
VaryingOptions::from_writer_options(self.options, output)
)
)?;
}
}
}
return Ok(());
}
};
// Write the interpolation modifier if needed
//
// We ignore all interpolation and auxiliary modifiers that aren't used in fragment
// shaders' input globals or vertex shaders' output globals.
let emit_interpolation_and_auxiliary = match self.entry_point.stage {
ShaderStage::Vertex => output,
ShaderStage::Fragment => !output,
ShaderStage::Compute => false,
};
// Write the I/O locations, if allowed
let io_location = if self.options.version.supports_explicit_locations()
|| !emit_interpolation_and_auxiliary
{
if self.options.version.supports_io_locations() {
if second_blend_source {
write!(self.out, "layout(location = {location}, index = 1) ")?;
} else {
write!(self.out, "layout(location = {location}) ")?;
}
None
} else {
Some(VaryingLocation {
location,
index: second_blend_source as u32,
})
}
} else {
None
};
// Write the interpolation qualifier.
if let Some(interp) = interpolation {
if emit_interpolation_and_auxiliary {
write!(self.out, "{} ", glsl_interpolation(interp))?;
}
}
// Write the sampling auxiliary qualifier.
//
// Before GLSL 4.2, the `centroid` and `sample` qualifiers were required to appear
// immediately before the `in` / `out` qualifier, so we'll just follow that rule
// here, regardless of the version.
if let Some(sampling) = sampling {
if emit_interpolation_and_auxiliary {
if let Some(qualifier) = glsl_sampling(sampling)? {
write!(self.out, "{qualifier} ")?;
}
}
}
// Write the input/output qualifier.
write!(self.out, "{} ", if output { "out" } else { "in" })?;
// Write the type
// `write_type` adds no leading or trailing spaces
self.write_type(ty)?;
// Finally write the global name and end the global with a `;` and a newline
// Leading space is important
let vname = VaryingName {
binding: &crate::Binding::Location {
location,
interpolation: None,
sampling: None,
second_blend_source,
},
stage: self.entry_point.stage,
options: VaryingOptions::from_writer_options(self.options, output),
};
writeln!(self.out, " {vname};")?;
if let Some(location) = io_location {
self.varying.insert(vname.to_string(), location);
}
Ok(())
}
/// Helper method used to write functions (both entry points and regular functions)
///
/// # Notes
/// Adds a newline
fn write_function(
&mut self,
ty: back::FunctionType,
func: &crate::Function,
info: &valid::FunctionInfo,
) -> BackendResult {
// Create a function context for the function being written
let ctx = back::FunctionCtx {
ty,
info,
expressions: &func.expressions,
named_expressions: &func.named_expressions,
expr_kind_tracker: ExpressionKindTracker::from_arena(&func.expressions),
};
self.named_expressions.clear();
self.update_expressions_to_bake(func, info);
// Write the function header
//
// glsl headers are the same as in c:
// `ret_type name(args)`
// `ret_type` is the return type
// `name` is the function name
// `args` is a comma separated list of `type name`
// | - `type` is the argument type
// | - `name` is the argument name
// Start by writing the return type if any otherwise write void
// This is the only place where `void` is a valid type
// (though it's more a keyword than a type)
if let back::FunctionType::EntryPoint(_) = ctx.ty {
write!(self.out, "void")?;
} else if let Some(ref result) = func.result {
self.write_type(result.ty)?;
if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner {
self.write_array_size(base, size)?
}
} else {
write!(self.out, "void")?;
}
// Write the function name and open parentheses for the argument list
let function_name = match ctx.ty {
back::FunctionType::Function(handle) => &self.names[&NameKey::Function(handle)],
back::FunctionType::EntryPoint(_) => "main",
};
write!(self.out, " {function_name}(")?;
// Write the comma separated argument list
//
// We need access to `Self` here so we use the reference passed to the closure as an
// argument instead of capturing as that would cause a borrow checker error
let arguments = match ctx.ty {
back::FunctionType::EntryPoint(_) => &[][..],
back::FunctionType::Function(_) => &func.arguments,
};
let arguments: Vec<_> = arguments
.iter()
.enumerate()
.filter(|&(_, arg)| match self.module.types[arg.ty].inner {
TypeInner::Sampler { .. } => false,
_ => true,
})
.collect();
self.write_slice(&arguments, |this, _, &(i, arg)| {
// Write the argument type
match this.module.types[arg.ty].inner {
// We treat images separately because they might require
// writing the storage format
TypeInner::Image {
dim,
arrayed,
class,
} => {
// Write the storage format if needed
if let TypeInner::Image {
class: crate::ImageClass::Storage { format, .. },
..
} = this.module.types[arg.ty].inner
{
write!(this.out, "layout({}) ", glsl_storage_format(format)?)?;
}
// write the type
//
// This is way we need the leading space because `write_image_type` doesn't add
// any spaces at the beginning or end
this.write_image_type(dim, arrayed, class)?;
}
TypeInner::Pointer { base, .. } => {
// write parameter qualifiers
write!(this.out, "inout ")?;
this.write_type(base)?;
}
// All other types are written by `write_type`
_ => {
this.write_type(arg.ty)?;
}
}
// Write the argument name
// The leading space is important
write!(this.out, " {}", &this.names[&ctx.argument_key(i as u32)])?;
// Write array size
match this.module.types[arg.ty].inner {
TypeInner::Array { base, size, .. } => {
this.write_array_size(base, size)?;
}
TypeInner::Pointer { base, .. } => {
if let TypeInner::Array { base, size, .. } = this.module.types[base].inner {
this.write_array_size(base, size)?;
}
}
_ => {}
}
Ok(())
})?;
// Close the parentheses and open braces to start the function body
writeln!(self.out, ") {{")?;
if self.options.zero_initialize_workgroup_memory
&& ctx.ty.is_compute_entry_point(self.module)
{
self.write_workgroup_variables_initialization(&ctx)?;
}
// Compose the function arguments from globals, in case of an entry point.
if let back::FunctionType::EntryPoint(ep_index) = ctx.ty {
let stage = self.module.entry_points[ep_index as usize].stage;
for (index, arg) in func.arguments.iter().enumerate() {
write!(self.out, "{}", back::INDENT)?;
self.write_type(arg.ty)?;
let name = &self.names[&NameKey::EntryPointArgument(ep_index, index as u32)];
write!(self.out, " {name}")?;
write!(self.out, " = ")?;
match self.module.types[arg.ty].inner {
TypeInner::Struct { ref members, .. } => {
self.write_type(arg.ty)?;
write!(self.out, "(")?;
for (index, member) in members.iter().enumerate() {
let varying_name = VaryingName {
binding: member.binding.as_ref().unwrap(),
stage,
options: VaryingOptions::from_writer_options(self.options, false),
};
if index != 0 {
write!(self.out, ", ")?;
}
write!(self.out, "{varying_name}")?;
}
writeln!(self.out, ");")?;
}
_ => {
let varying_name = VaryingName {
binding: arg.binding.as_ref().unwrap(),
stage,
options: VaryingOptions::from_writer_options(self.options, false),
};
writeln!(self.out, "{varying_name};")?;
}
}
}
}
// Write all function locals
// Locals are `type name (= init)?;` where the init part (including the =) are optional
//
// Always adds a newline
for (handle, local) in func.local_variables.iter() {
// Write indentation (only for readability) and the type
// `write_type` adds no trailing space
write!(self.out, "{}", back::INDENT)?;
self.write_type(local.ty)?;
// Write the local name
// The leading space is important
write!(self.out, " {}", self.names[&ctx.name_key(handle)])?;
// Write size for array type
if let TypeInner::Array { base, size, .. } = self.module.types[local.ty].inner {
self.write_array_size(base, size)?;
}
// Write the local initializer if needed
if let Some(init) = local.init {
// Put the equal signal only if there's a initializer
// The leading and trailing spaces aren't needed but help with readability
write!(self.out, " = ")?;
// Write the constant
// `write_constant` adds no trailing or leading space/newline
self.write_expr(init, &ctx)?;
} else if is_value_init_supported(self.module, local.ty) {
write!(self.out, " = ")?;
self.write_zero_init_value(local.ty)?;
}
// Finish the local with `;` and add a newline (only for readability)
writeln!(self.out, ";")?
}
// Write the function body (statement list)
for sta in func.body.iter() {
// Write a statement, the indentation should always be 1 when writing the function body
// `write_stmt` adds a newline
self.write_stmt(sta, &ctx, back::Level(1))?;
}
// Close braces and add a newline
writeln!(self.out, "}}")?;
Ok(())
}
fn write_workgroup_variables_initialization(
&mut self,
ctx: &back::FunctionCtx,
) -> BackendResult {
let mut vars = self
.module
.global_variables
.iter()
.filter(|&(handle, var)| {
!ctx.info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup
})
.peekable();
if vars.peek().is_some() {
let level = back::Level(1);
writeln!(self.out, "{level}if (gl_LocalInvocationID == uvec3(0u)) {{")?;
for (handle, var) in vars {
let name = &self.names[&NameKey::GlobalVariable(handle)];
write!(self.out, "{}{} = ", level.next(), name)?;
self.write_zero_init_value(var.ty)?;
writeln!(self.out, ";")?;
}
writeln!(self.out, "{level}}}")?;
self.write_barrier(crate::Barrier::WORK_GROUP, level)?;
}
Ok(())
}
/// Write a list of comma separated `T` values using a writer function `F`.
///
/// The writer function `F` receives a mutable reference to `self` that if needed won't cause
/// borrow checker issues (using for example a closure with `self` will cause issues), the
/// second argument is the 0 based index of the element on the list, and the last element is
/// a reference to the element `T` being written
///
/// # Notes
/// - Adds no newlines or leading/trailing whitespace
/// - The last element won't have a trailing `,`
fn write_slice<T, F: FnMut(&mut Self, u32, &T) -> BackendResult>(
&mut self,
data: &[T],
mut f: F,
) -> BackendResult {
// Loop through `data` invoking `f` for each element
for (index, item) in data.iter().enumerate() {
if index != 0 {
write!(self.out, ", ")?;
}
f(self, index as u32, item)?;
}
Ok(())
}
/// Helper method used to write global constants
fn write_global_constant(&mut self, handle: Handle<crate::Constant>) -> BackendResult {
write!(self.out, "const ")?;
let constant = &self.module.constants[handle];
self.write_type(constant.ty)?;
let name = &self.names[&NameKey::Constant(handle)];
write!(self.out, " {name}")?;
if let TypeInner::Array { base, size, .. } = self.module.types[constant.ty].inner {
self.write_array_size(base, size)?;
}
write!(self.out, " = ")?;
self.write_const_expr(constant.init)?;
writeln!(self.out, ";")?;
Ok(())
}
/// Helper method used to output a dot product as an arithmetic expression
///
fn write_dot_product(
&mut self,
arg: Handle<crate::Expression>,
arg1: Handle<crate::Expression>,
size: usize,
ctx: &back::FunctionCtx,
) -> BackendResult {
// Write parentheses around the dot product expression to prevent operators
// with different precedences from applying earlier.
write!(self.out, "(")?;
// Cycle through all the components of the vector
for index in 0..size {
let component = back::COMPONENTS[index];
// Write the addition to the previous product
// This will print an extra '+' at the beginning but that is fine in glsl
write!(self.out, " + ")?;
// Write the first vector expression, this expression is marked to be
// cached so unless it can't be cached (for example, it's a Constant)
// it shouldn't produce large expressions.
self.write_expr(arg, ctx)?;
// Access the current component on the first vector
write!(self.out, ".{component} * ")?;
// Write the second vector expression, this expression is marked to be
// cached so unless it can't be cached (for example, it's a Constant)
// it shouldn't produce large expressions.
self.write_expr(arg1, ctx)?;
// Access the current component on the second vector
write!(self.out, ".{component}")?;
}
write!(self.out, ")")?;
Ok(())
}
/// Helper method used to write structs
///
/// # Notes
/// Ends in a newline
fn write_struct_body(
&mut self,
handle: Handle<crate::Type>,
members: &[crate::StructMember],
) -> BackendResult {
// glsl structs are written as in C
// `struct name() { members };`
// | `struct` is a keyword
// | `name` is the struct name
// | `members` is a semicolon separated list of `type name`
// | `type` is the member type
// | `name` is the member name
writeln!(self.out, "{{")?;
for (idx, member) in members.iter().enumerate() {
// The indentation is only for readability
write!(self.out, "{}", back::INDENT)?;
match self.module.types[member.ty].inner {
TypeInner::Array {
base,
size,
stride: _,
} => {
self.write_type(base)?;
write!(
self.out,
" {}",
&self.names[&NameKey::StructMember(handle, idx as u32)]
)?;
// Write [size]
self.write_array_size(base, size)?;
// Newline is important
writeln!(self.out, ";")?;
}
_ => {
// Write the member type
// Adds no trailing space
self.write_type(member.ty)?;
// Write the member name and put a semicolon
// The leading space is important
// All members must have a semicolon even the last one
writeln!(
self.out,
" {};",
&self.names[&NameKey::StructMember(handle, idx as u32)]
)?;
}
}
}
write!(self.out, "}}")?;
Ok(())
}
/// Helper method used to write statements
///
/// # Notes
/// Always adds a newline
fn write_stmt(
&mut self,
sta: &crate::Statement,
ctx: &back::FunctionCtx,
level: back::Level,
) -> BackendResult {
use crate::Statement;
match *sta {
// This is where we can generate intermediate constants for some expression types.
Statement::Emit(ref range) => {
for handle in range.clone() {
let ptr_class = ctx.resolve_type(handle, &self.module.types).pointer_space();
let expr_name = if ptr_class.is_some() {
// GLSL can't save a pointer-valued expression in a variable,
// but we shouldn't ever need to: they should never be named expressions,
// and none of the expression types flagged by bake_ref_count can be pointer-valued.
None
} else if let Some(name) = ctx.named_expressions.get(&handle) {
// Front end provides names for all variables at the start of writing.
// But we write them to step by step. We need to recache them
// Otherwise, we could accidentally write variable name instead of full expression.
// Also, we use sanitized names! It defense backend from generating variable with name from reserved keywords.
Some(self.namer.call(name))
} else if self.need_bake_expressions.contains(&handle) {
Some(Baked(handle).to_string())
} else {
None
};
// If we are going to write an `ImageLoad` next and the target image
// is sampled and we are using the `Restrict` policy for bounds
// checking images we need to write a local holding the clamped lod.
if let crate::Expression::ImageLoad {
image,
level: Some(level_expr),
..
} = ctx.expressions[handle]
{
if let TypeInner::Image {
class: crate::ImageClass::Sampled { .. },
..
} = *ctx.resolve_type(image, &self.module.types)
{
if let proc::BoundsCheckPolicy::Restrict = self.policies.image_load {
write!(self.out, "{level}")?;
self.write_clamped_lod(ctx, handle, image, level_expr)?
}
}
}
if let Some(name) = expr_name {
write!(self.out, "{level}")?;
self.write_named_expr(handle, name, handle, ctx)?;
}
}
}
// Blocks are simple we just need to write the block statements between braces
// We could also just print the statements but this is more readable and maps more
// closely to the IR
Statement::Block(ref block) => {
write!(self.out, "{level}")?;
writeln!(self.out, "{{")?;
for sta in block.iter() {
// Increase the indentation to help with readability
self.write_stmt(sta, ctx, level.next())?
}
writeln!(self.out, "{level}}}")?
}
// Ifs are written as in C:
// ```
// if(condition) {
// accept
// } else {
// reject
// }
// ```
Statement::If {
condition,
ref accept,
ref reject,
} => {
write!(self.out, "{level}")?;
write!(self.out, "if (")?;
self.write_expr(condition, ctx)?;
writeln!(self.out, ") {{")?;
for sta in accept {
// Increase indentation to help with readability
self.write_stmt(sta, ctx, level.next())?;
}
// If there are no statements in the reject block we skip writing it
// This is only for readability
if !reject.is_empty() {
writeln!(self.out, "{level}}} else {{")?;
for sta in reject {
// Increase indentation to help with readability
self.write_stmt(sta, ctx, level.next())?;
}
}
writeln!(self.out, "{level}}}")?
}
// Switch are written as in C:
// ```
// switch (selector) {
// // Fallthrough
// case label:
// block
// // Non fallthrough
// case label:
// block
// break;
// default:
// block
// }
// ```
// Where the `default` case happens isn't important but we put it last
// so that we don't need to print a `break` for it
Statement::Switch {
selector,
ref cases,
} => {
let l2 = level.next();
// Some GLSL consumers may not handle switches with a single
// body correctly: See wgpu#4514. Write such switch statements
// as a `do {} while(false);` loop instead.
//
// Since doing so may inadvertently capture `continue`
// statements in the switch body, we must apply continue
// forwarding. See the `naga::back::continue_forward` module
// docs for details.
let one_body = cases
.iter()
.rev()
.skip(1)
.all(|case| case.fall_through && case.body.is_empty());
if one_body {
// Unlike HLSL, in GLSL `continue_ctx` only needs to know
// about [`Switch`] statements that are being rendered as
// `do-while` loops.
if let Some(variable) = self.continue_ctx.enter_switch(&mut self.namer) {
writeln!(self.out, "{level}bool {variable} = false;",)?;
};
writeln!(self.out, "{level}do {{")?;
// Note: Expressions have no side-effects so we don't need to emit selector expression.
// Body
if let Some(case) = cases.last() {
for sta in case.body.iter() {
self.write_stmt(sta, ctx, l2)?;
}
}
// End do-while
writeln!(self.out, "{level}}} while(false);")?;
// Handle any forwarded continue statements.
use back::continue_forward::ExitControlFlow;
let op = match self.continue_ctx.exit_switch() {
ExitControlFlow::None => None,
ExitControlFlow::Continue { variable } => Some(("continue", variable)),
ExitControlFlow::Break { variable } => Some(("break", variable)),
};
if let Some((control_flow, variable)) = op {
writeln!(self.out, "{level}if ({variable}) {{")?;
writeln!(self.out, "{l2}{control_flow};")?;
writeln!(self.out, "{level}}}")?;
}
} else {
// Start the switch
write!(self.out, "{level}")?;
write!(self.out, "switch(")?;
self.write_expr(selector, ctx)?;
writeln!(self.out, ") {{")?;
// Write all cases
for case in cases {
match case.value {
crate::SwitchValue::I32(value) => {
write!(self.out, "{l2}case {value}:")?
}
crate::SwitchValue::U32(value) => {
write!(self.out, "{l2}case {value}u:")?
}
crate::SwitchValue::Default => write!(self.out, "{l2}default:")?,
}
let write_block_braces = !(case.fall_through && case.body.is_empty());
if write_block_braces {
writeln!(self.out, " {{")?;
} else {
writeln!(self.out)?;
}
for sta in case.body.iter() {
self.write_stmt(sta, ctx, l2.next())?;
}
if !case.fall_through
&& case.body.last().map_or(true, |s| !s.is_terminator())
{
writeln!(self.out, "{}break;", l2.next())?;
}
if write_block_braces {
writeln!(self.out, "{l2}}}")?;
}
}
writeln!(self.out, "{level}}}")?
}
}
// Loops in naga IR are based on wgsl loops, glsl can emulate the behaviour by using a
// while true loop and appending the continuing block to the body resulting on:
// ```
// bool loop_init = true;
// while(true) {
// if (!loop_init) { <continuing> }
// loop_init = false;
// <body>
// }
// ```
Statement::Loop {
ref body,
ref continuing,
break_if,
} => {
self.continue_ctx.enter_loop();
if !continuing.is_empty() || break_if.is_some() {
let gate_name = self.namer.call("loop_init");
writeln!(self.out, "{level}bool {gate_name} = true;")?;
writeln!(self.out, "{level}while(true) {{")?;
let l2 = level.next();
let l3 = l2.next();
writeln!(self.out, "{l2}if (!{gate_name}) {{")?;
for sta in continuing {
self.write_stmt(sta, ctx, l3)?;
}
if let Some(condition) = break_if {
write!(self.out, "{l3}if (")?;
self.write_expr(condition, ctx)?;
writeln!(self.out, ") {{")?;
writeln!(self.out, "{}break;", l3.next())?;
writeln!(self.out, "{l3}}}")?;
}
writeln!(self.out, "{l2}}}")?;
writeln!(self.out, "{}{} = false;", level.next(), gate_name)?;
} else {
writeln!(self.out, "{level}while(true) {{")?;
}
for sta in body {
self.write_stmt(sta, ctx, level.next())?;
}
writeln!(self.out, "{level}}}")?;
self.continue_ctx.exit_loop();
}
// Break, continue and return as written as in C
// `break;`
Statement::Break => {
write!(self.out, "{level}")?;
writeln!(self.out, "break;")?
}
// `continue;`
Statement::Continue => {
// Sometimes we must render a `Continue` statement as a `break`.
// See the docs for the `back::continue_forward` module.
if let Some(variable) = self.continue_ctx.continue_encountered() {
writeln!(self.out, "{level}{variable} = true;",)?;
writeln!(self.out, "{level}break;")?
} else {
writeln!(self.out, "{level}continue;")?
}
}
// `return expr;`, `expr` is optional
Statement::Return { value } => {
write!(self.out, "{level}")?;
match ctx.ty {
back::FunctionType::Function(_) => {
write!(self.out, "return")?;
// Write the expression to be returned if needed
if let Some(expr) = value {
write!(self.out, " ")?;
self.write_expr(expr, ctx)?;
}
writeln!(self.out, ";")?;
}
back::FunctionType::EntryPoint(ep_index) => {
let mut has_point_size = false;
let ep = &self.module.entry_points[ep_index as usize];
if let Some(ref result) = ep.function.result {
let value = value.unwrap();
match self.module.types[result.ty].inner {
TypeInner::Struct { ref members, .. } => {
let temp_struct_name = match ctx.expressions[value] {
crate::Expression::Compose { .. } => {
let return_struct = "_tmp_return";
write!(
self.out,
"{} {} = ",
&self.names[&NameKey::Type(result.ty)],
return_struct
)?;
self.write_expr(value, ctx)?;
writeln!(self.out, ";")?;
write!(self.out, "{level}")?;
Some(return_struct)
}
_ => None,
};
for (index, member) in members.iter().enumerate() {
if let Some(crate::Binding::BuiltIn(
crate::BuiltIn::PointSize,
)) = member.binding
{
has_point_size = true;
}
let varying_name = VaryingName {
binding: member.binding.as_ref().unwrap(),
stage: ep.stage,
options: VaryingOptions::from_writer_options(
self.options,
true,
),
};
write!(self.out, "{varying_name} = ")?;
if let Some(struct_name) = temp_struct_name {
write!(self.out, "{struct_name}")?;
} else {
self.write_expr(value, ctx)?;
}
// Write field name
writeln!(
self.out,
".{};",
&self.names
[&NameKey::StructMember(result.ty, index as u32)]
)?;
write!(self.out, "{level}")?;
}
}
_ => {
let name = VaryingName {
binding: result.binding.as_ref().unwrap(),
stage: ep.stage,
options: VaryingOptions::from_writer_options(
self.options,
true,
),
};
write!(self.out, "{name} = ")?;
self.write_expr(value, ctx)?;
writeln!(self.out, ";")?;
write!(self.out, "{level}")?;
}
}
}
let is_vertex_stage = self.module.entry_points[ep_index as usize].stage
== ShaderStage::Vertex;
if is_vertex_stage
&& self
.options
.writer_flags
.contains(WriterFlags::ADJUST_COORDINATE_SPACE)
{
writeln!(
self.out,
"gl_Position.yz = vec2(-gl_Position.y, gl_Position.z * 2.0 - gl_Position.w);",
)?;
write!(self.out, "{level}")?;
}
if is_vertex_stage
&& self
.options
.writer_flags
.contains(WriterFlags::FORCE_POINT_SIZE)
&& !has_point_size
{
writeln!(self.out, "gl_PointSize = 1.0;")?;
write!(self.out, "{level}")?;
}
writeln!(self.out, "return;")?;
}
}
}
// This is one of the places were glsl adds to the syntax of C in this case the discard
// keyword which ceases all further processing in a fragment shader, it's called OpKill
// in spir-v that's why it's called `Statement::Kill`
Statement::Kill => writeln!(self.out, "{level}discard;")?,
Statement::Barrier(flags) => {
self.write_barrier(flags, level)?;
}
// Stores in glsl are just variable assignments written as `pointer = value;`
Statement::Store { pointer, value } => {
write!(self.out, "{level}")?;
self.write_expr(pointer, ctx)?;
write!(self.out, " = ")?;
self.write_expr(value, ctx)?;
writeln!(self.out, ";")?
}
Statement::WorkGroupUniformLoad { pointer, result } => {
// GLSL doesn't have pointers, which means that this backend needs to ensure that
// the actual "loading" is happening between the two barriers.
// This is done in `Emit` by never emitting a variable name for pointer variables
self.write_barrier(crate::Barrier::WORK_GROUP, level)?;
let result_name = Baked(result).to_string();
write!(self.out, "{level}")?;
// Expressions cannot have side effects, so just writing the expression here is fine.
self.write_named_expr(pointer, result_name, result, ctx)?;
self.write_barrier(crate::Barrier::WORK_GROUP, level)?;
}
// Stores a value into an image.
Statement::ImageStore {
image,
coordinate,
array_index,
value,
} => {
write!(self.out, "{level}")?;
self.write_image_store(ctx, image, coordinate, array_index, value)?
}
// A `Call` is written `name(arguments)` where `arguments` is a comma separated expressions list
Statement::Call {
function,
ref arguments,
result,
} => {
write!(self.out, "{level}")?;
if let Some(expr) = result {
let name = Baked(expr).to_string();
let result = self.module.functions[function].result.as_ref().unwrap();
self.write_type(result.ty)?;
write!(self.out, " {name}")?;
if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner
{
self.write_array_size(base, size)?
}
write!(self.out, " = ")?;
self.named_expressions.insert(expr, name);
}
write!(self.out, "{}(", &self.names[&NameKey::Function(function)])?;
let arguments: Vec<_> = arguments
.iter()
.enumerate()
.filter_map(|(i, arg)| {
let arg_ty = self.module.functions[function].arguments[i].ty;
match self.module.types[arg_ty].inner {
TypeInner::Sampler { .. } => None,
_ => Some(*arg),
}
})
.collect();
self.write_slice(&arguments, |this, _, arg| this.write_expr(*arg, ctx))?;
writeln!(self.out, ");")?
}
Statement::Atomic {
pointer,
ref fun,
value,
result,
} => {
write!(self.out, "{level}")?;
if let Some(result) = result {
let res_name = Baked(result).to_string();
let res_ty = ctx.resolve_type(result, &self.module.types);
self.write_value_type(res_ty)?;
write!(self.out, " {res_name} = ")?;
self.named_expressions.insert(result, res_name);
}
let fun_str = fun.to_glsl();
write!(self.out, "atomic{fun_str}(")?;
self.write_expr(pointer, ctx)?;
write!(self.out, ", ")?;
// handle the special cases
match *fun {
crate::AtomicFunction::Subtract => {
// we just wrote `InterlockedAdd`, so negate the argument
write!(self.out, "-")?;
}
crate::AtomicFunction::Exchange { compare: Some(_) } => {
return Err(Error::Custom(
"atomic CompareExchange is not implemented".to_string(),
));
}
_ => {}
}
self.write_expr(value, ctx)?;
writeln!(self.out, ");")?;
}
// Stores a value into an image.
Statement::ImageAtomic {
image,
coordinate,
array_index,
fun,
value,
} => {
write!(self.out, "{level}")?;
self.write_image_atomic(ctx, image, coordinate, array_index, fun, value)?
}
Statement::RayQuery { .. } => unreachable!(),
Statement::SubgroupBallot { result, predicate } => {
write!(self.out, "{level}")?;
let res_name = Baked(result).to_string();
let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
self.write_value_type(res_ty)?;
write!(self.out, " {res_name} = ")?;
self.named_expressions.insert(result, res_name);
write!(self.out, "subgroupBallot(")?;
match predicate {
Some(predicate) => self.write_expr(predicate, ctx)?,
None => write!(self.out, "true")?,
}
writeln!(self.out, ");")?;
}
Statement::SubgroupCollectiveOperation {
op,
collective_op,
argument,
result,
} => {
write!(self.out, "{level}")?;
let res_name = Baked(result).to_string();
let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
self.write_value_type(res_ty)?;
write!(self.out, " {res_name} = ")?;
self.named_expressions.insert(result, res_name);
match (collective_op, op) {
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::All) => {
write!(self.out, "subgroupAll(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Any) => {
write!(self.out, "subgroupAny(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Add) => {
write!(self.out, "subgroupAdd(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Mul) => {
write!(self.out, "subgroupMul(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Max) => {
write!(self.out, "subgroupMax(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Min) => {
write!(self.out, "subgroupMin(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::And) => {
write!(self.out, "subgroupAnd(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Or) => {
write!(self.out, "subgroupOr(")?
}
(crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Xor) => {
write!(self.out, "subgroupXor(")?
}
(crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Add) => {
write!(self.out, "subgroupExclusiveAdd(")?
}
(crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Mul) => {
write!(self.out, "subgroupExclusiveMul(")?
}
(crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Add) => {
write!(self.out, "subgroupInclusiveAdd(")?
}
(crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Mul) => {
write!(self.out, "subgroupInclusiveMul(")?
}
_ => unimplemented!(),
}
self.write_expr(argument, ctx)?;
writeln!(self.out, ");")?;
}
Statement::SubgroupGather {
mode,
argument,
result,
} => {
write!(self.out, "{level}")?;
let res_name = Baked(result).to_string();
let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
self.write_value_type(res_ty)?;
write!(self.out, " {res_name} = ")?;
self.named_expressions.insert(result, res_name);
match mode {
crate::GatherMode::BroadcastFirst => {
write!(self.out, "subgroupBroadcastFirst(")?;
}
crate::GatherMode::Broadcast(_) => {
write!(self.out, "subgroupBroadcast(")?;
}
crate::GatherMode::Shuffle(_) => {
write!(self.out, "subgroupShuffle(")?;
}
crate::GatherMode::ShuffleDown(_) => {
write!(self.out, "subgroupShuffleDown(")?;
}
crate::GatherMode::ShuffleUp(_) => {
write!(self.out, "subgroupShuffleUp(")?;
}
crate::GatherMode::ShuffleXor(_) => {
write!(self.out, "subgroupShuffleXor(")?;
}
}
self.write_expr(argument, ctx)?;
match mode {
crate::GatherMode::BroadcastFirst => {}
crate::GatherMode::Broadcast(index)
| crate::GatherMode::Shuffle(index)
| crate::GatherMode::ShuffleDown(index)
| crate::GatherMode::ShuffleUp(index)
| crate::GatherMode::ShuffleXor(index) => {
write!(self.out, ", ")?;
self.write_expr(index, ctx)?;
}
}
writeln!(self.out, ");")?;
}
}
Ok(())
}
/// Write a const expression.
///
/// Write `expr`, a handle to an [`Expression`] in the current [`Module`]'s
/// constant expression arena, as GLSL expression.
///
/// # Notes
/// Adds no newlines or leading/trailing whitespace
///
/// [`Expression`]: crate::Expression
/// [`Module`]: crate::Module
fn write_const_expr(&mut self, expr: Handle<crate::Expression>) -> BackendResult {
self.write_possibly_const_expr(
expr,
&self.module.global_expressions,
|expr| &self.info[expr],
|writer, expr| writer.write_const_expr(expr),
)
}
/// Write [`Expression`] variants that can occur in both runtime and const expressions.
///
/// Write `expr`, a handle to an [`Expression`] in the arena `expressions`,
/// as as GLSL expression. This must be one of the [`Expression`] variants
/// that is allowed to occur in constant expressions.
///
/// Use `write_expression` to write subexpressions.
///
/// This is the common code for `write_expr`, which handles arbitrary
/// runtime expressions, and `write_const_expr`, which only handles
/// const-expressions. Each of those callers passes itself (essentially) as
/// the `write_expression` callback, so that subexpressions are restricted
/// to the appropriate variants.
///
/// # Notes
/// Adds no newlines or leading/trailing whitespace
///
/// [`Expression`]: crate::Expression
fn write_possibly_const_expr<'w, I, E>(
&'w mut self,
expr: Handle<crate::Expression>,
expressions: &crate::Arena<crate::Expression>,
info: I,
write_expression: E,
) -> BackendResult
where
I: Fn(Handle<crate::Expression>) -> &'w proc::TypeResolution,
E: Fn(&mut Self, Handle<crate::Expression>) -> BackendResult,
{
use crate::Expression;
match expressions[expr] {
Expression::Literal(literal) => {
match literal {
// Floats are written using `Debug` instead of `Display` because it always appends the
// decimal part even it's zero which is needed for a valid glsl float constant
crate::Literal::F64(value) => write!(self.out, "{value:?}LF")?,
crate::Literal::F32(value) => write!(self.out, "{value:?}")?,
// Unsigned integers need a `u` at the end
//
// While `core` doesn't necessarily need it, it's allowed and since `es` needs it we
// always write it as the extra branch wouldn't have any benefit in readability
crate::Literal::U32(value) => write!(self.out, "{value}u")?,
crate::Literal::I32(value) => write!(self.out, "{value}")?,
crate::Literal::Bool(value) => write!(self.out, "{value}")?,
crate::Literal::I64(_) => {
return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
}
crate::Literal::U64(_) => {
return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
}
crate::Literal::AbstractInt(_) | crate::Literal::AbstractFloat(_) => {
return Err(Error::Custom(
"Abstract types should not appear in IR presented to backends".into(),
));
}
}
}
Expression::Constant(handle) => {
let constant = &self.module.constants[handle];
if constant.name.is_some() {
write!(self.out, "{}", self.names[&NameKey::Constant(handle)])?;
} else {
self.write_const_expr(constant.init)?;
}
}
Expression::ZeroValue(ty) => {
self.write_zero_init_value(ty)?;
}
Expression::Compose { ty, ref components } => {
self.write_type(ty)?;
if let TypeInner::Array { base, size, .. } = self.module.types[ty].inner {
self.write_array_size(base, size)?;
}
write!(self.out, "(")?;
for (index, component) in components.iter().enumerate() {
if index != 0 {
write!(self.out, ", ")?;
}
write_expression(self, *component)?;
}
write!(self.out, ")")?
}
// `Splat` needs to actually write down a vector, it's not always inferred in GLSL.
Expression::Splat { size: _, value } => {
let resolved = info(expr).inner_with(&self.module.types);
self.write_value_type(resolved)?;
write!(self.out, "(")?;
write_expression(self, value)?;
write!(self.out, ")")?
}
_ => unreachable!(),
}
Ok(())
}
/// Helper method to write expressions
///
/// # Notes
/// Doesn't add any newlines or leading/trailing spaces
fn write_expr(
&mut self,
expr: Handle<crate::Expression>,
ctx: &back::FunctionCtx,
) -> BackendResult {
use crate::Expression;
if let Some(name) = self.named_expressions.get(&expr) {
write!(self.out, "{name}")?;
return Ok(());
}
match ctx.expressions[expr] {
Expression::Literal(_)
| Expression::Constant(_)
| Expression::ZeroValue(_)
| Expression::Compose { .. }
| Expression::Splat { .. } => {
self.write_possibly_const_expr(
expr,
ctx.expressions,
|expr| &ctx.info[expr].ty,
|writer, expr| writer.write_expr(expr, ctx),
)?;
}
Expression::Override(_) => return Err(Error::Override),
// `Access` is applied to arrays, vectors and matrices and is written as indexing
Expression::Access { base, index } => {
self.write_expr(base, ctx)?;
write!(self.out, "[")?;
self.write_expr(index, ctx)?;
write!(self.out, "]")?
}
// `AccessIndex` is the same as `Access` except that the index is a constant and it can
// be applied to structs, in this case we need to find the name of the field at that
// index and write `base.field_name`
Expression::AccessIndex { base, index } => {
self.write_expr(base, ctx)?;
let base_ty_res = &ctx.info[base].ty;
let mut resolved = base_ty_res.inner_with(&self.module.types);
let base_ty_handle = match *resolved {
TypeInner::Pointer { base, space: _ } => {
resolved = &self.module.types[base].inner;
Some(base)
}
_ => base_ty_res.handle(),
};
match *resolved {
TypeInner::Vector { .. } => {
// Write vector access as a swizzle
write!(self.out, ".{}", back::COMPONENTS[index as usize])?
}
TypeInner::Matrix { .. }
| TypeInner::Array { .. }
| TypeInner::ValuePointer { .. } => write!(self.out, "[{index}]")?,
TypeInner::Struct { .. } => {
// This will never panic in case the type is a `Struct`, this is not true
// for other types so we can only check while inside this match arm
let ty = base_ty_handle.unwrap();
write!(
self.out,
".{}",
&self.names[&NameKey::StructMember(ty, index)]
)?
}
ref other => return Err(Error::Custom(format!("Cannot index {other:?}"))),
}
}
// `Swizzle` adds a few letters behind the dot.
Expression::Swizzle {
size,
vector,
pattern,
} => {
self.write_expr(vector, ctx)?;
write!(self.out, ".")?;
for &sc in pattern[..size as usize].iter() {
self.out.write_char(back::COMPONENTS[sc as usize])?;
}
}
// Function arguments are written as the argument name
Expression::FunctionArgument(pos) => {
write!(self.out, "{}", &self.names[&ctx.argument_key(pos)])?
}
// Global variables need some special work for their name but
// `get_global_name` does the work for us
Expression::GlobalVariable(handle) => {
let global = &self.module.global_variables[handle];
self.write_global_name(handle, global)?
}
// A local is written as it's name
Expression::LocalVariable(handle) => {
write!(self.out, "{}", self.names[&ctx.name_key(handle)])?
}
// glsl has no pointers so there's no load operation, just write the pointer expression
Expression::Load { pointer } => self.write_expr(pointer, ctx)?,
// `ImageSample` is a bit complicated compared to the rest of the IR.
//
// First there are three variations depending whether the sample level is explicitly set,
// if it's automatic or it it's bias:
// `texture(image, coordinate)` - Automatic sample level
// `texture(image, coordinate, bias)` - Bias sample level
// `textureLod(image, coordinate, level)` - Zero or Exact sample level
//
// Furthermore if `depth_ref` is some we need to append it to the coordinate vector
Expression::ImageSample {
image,
sampler: _, //TODO?
gather,
coordinate,
array_index,
offset,
level,
depth_ref,
} => {
let (dim, class, arrayed) = match *ctx.resolve_type(image, &self.module.types) {
TypeInner::Image {
dim,
class,
arrayed,
..
} => (dim, class, arrayed),
_ => unreachable!(),
};
let mut err = None;
if dim == crate::ImageDimension::Cube {
if offset.is_some() {
err = Some("gsamplerCube[Array][Shadow] doesn't support texture sampling with offsets");
}
if arrayed
&& matches!(class, crate::ImageClass::Depth { .. })
&& matches!(level, crate::SampleLevel::Gradient { .. })
{
err = Some("samplerCubeArrayShadow don't support textureGrad");
}
}
if gather.is_some() && level != crate::SampleLevel::Zero {
err = Some("textureGather doesn't support LOD parameters");
}
if let Some(err) = err {
return Err(Error::Custom(String::from(err)));
}
// `textureLod[Offset]` on `sampler2DArrayShadow` and `samplerCubeShadow` does not exist in GLSL,
// unless `GL_EXT_texture_shadow_lod` is present.
// But if the target LOD is zero, we can emulate that by using `textureGrad[Offset]` with a constant gradient of 0.
let workaround_lod_with_grad = ((dim == crate::ImageDimension::Cube && !arrayed)
|| (dim == crate::ImageDimension::D2 && arrayed))
&& level == crate::SampleLevel::Zero
&& matches!(class, crate::ImageClass::Depth { .. })
&& !self.features.contains(Features::TEXTURE_SHADOW_LOD);
// Write the function to be used depending on the sample level
let fun_name = match level {
crate::SampleLevel::Zero if gather.is_some() => "textureGather",
crate::SampleLevel::Zero if workaround_lod_with_grad => "textureGrad",
crate::SampleLevel::Auto | crate::SampleLevel::Bias(_) => "texture",
crate::SampleLevel::Zero | crate::SampleLevel::Exact(_) => "textureLod",
crate::SampleLevel::Gradient { .. } => "textureGrad",
};
let offset_name = match offset {
Some(_) => "Offset",
None => "",
};
write!(self.out, "{fun_name}{offset_name}(")?;
// Write the image that will be used
self.write_expr(image, ctx)?;
// The space here isn't required but it helps with readability
write!(self.out, ", ")?;
// We need to get the coordinates vector size to later build a vector that's `size + 1`
// if `depth_ref` is some, if it isn't a vector we panic as that's not a valid expression
let mut coord_dim = match *ctx.resolve_type(coordinate, &self.module.types) {
TypeInner::Vector { size, .. } => size as u8,
TypeInner::Scalar { .. } => 1,
_ => unreachable!(),
};
if array_index.is_some() {
coord_dim += 1;
}
let merge_depth_ref = depth_ref.is_some() && gather.is_none() && coord_dim < 4;
if merge_depth_ref {
coord_dim += 1;
}
let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
let is_vec = tex_1d_hack || coord_dim != 1;
// Compose a new texture coordinates vector
if is_vec {
write!(self.out, "vec{}(", coord_dim + tex_1d_hack as u8)?;
}
self.write_expr(coordinate, ctx)?;
if tex_1d_hack {
write!(self.out, ", 0.0")?;
}
if let Some(expr) = array_index {
write!(self.out, ", ")?;
self.write_expr(expr, ctx)?;
}
if merge_depth_ref {
write!(self.out, ", ")?;
self.write_expr(depth_ref.unwrap(), ctx)?;
}
if is_vec {
write!(self.out, ")")?;
}
if let (Some(expr), false) = (depth_ref, merge_depth_ref) {
write!(self.out, ", ")?;
self.write_expr(expr, ctx)?;
}
match level {
// Auto needs no more arguments
crate::SampleLevel::Auto => (),
// Zero needs level set to 0
crate::SampleLevel::Zero => {
if workaround_lod_with_grad {
let vec_dim = match dim {
crate::ImageDimension::Cube => 3,
_ => 2,
};
write!(self.out, ", vec{vec_dim}(0.0), vec{vec_dim}(0.0)")?;
} else if gather.is_none() {
write!(self.out, ", 0.0")?;
}
}
// Exact and bias require another argument
crate::SampleLevel::Exact(expr) => {
write!(self.out, ", ")?;
self.write_expr(expr, ctx)?;
}
crate::SampleLevel::Bias(_) => {
// This needs to be done after the offset writing
}
crate::SampleLevel::Gradient { x, y } => {
// If we are using sampler2D to replace sampler1D, we also
// need to make sure to use vec2 gradients
if tex_1d_hack {
write!(self.out, ", vec2(")?;
self.write_expr(x, ctx)?;
write!(self.out, ", 0.0)")?;
write!(self.out, ", vec2(")?;
self.write_expr(y, ctx)?;
write!(self.out, ", 0.0)")?;
} else {
write!(self.out, ", ")?;
self.write_expr(x, ctx)?;
write!(self.out, ", ")?;
self.write_expr(y, ctx)?;
}
}
}
if let Some(constant) = offset {
write!(self.out, ", ")?;
if tex_1d_hack {
write!(self.out, "ivec2(")?;
}
self.write_const_expr(constant)?;
if tex_1d_hack {
write!(self.out, ", 0)")?;
}
}
// Bias is always the last argument
if let crate::SampleLevel::Bias(expr) = level {
write!(self.out, ", ")?;
self.write_expr(expr, ctx)?;
}
if let (Some(component), None) = (gather, depth_ref) {
write!(self.out, ", {}", component as usize)?;
}
// End the function
write!(self.out, ")")?
}
Expression::ImageLoad {
image,
coordinate,
array_index,
sample,
level,
} => self.write_image_load(expr, ctx, image, coordinate, array_index, sample, level)?,
// Query translates into one of the:
// - textureSize/imageSize
// - textureQueryLevels
// - textureSamples/imageSamples
Expression::ImageQuery { image, query } => {
use crate::ImageClass;
// This will only panic if the module is invalid
let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
TypeInner::Image {
dim,
arrayed: _,
class,
} => (dim, class),
_ => unreachable!(),
};
let components = match dim {
crate::ImageDimension::D1 => 1,
crate::ImageDimension::D2 => 2,
crate::ImageDimension::D3 => 3,
crate::ImageDimension::Cube => 2,
};
if let crate::ImageQuery::Size { .. } = query {
match components {
1 => write!(self.out, "uint(")?,
_ => write!(self.out, "uvec{components}(")?,
}
} else {
write!(self.out, "uint(")?;
}
match query {
crate::ImageQuery::Size { level } => {
match class {
ImageClass::Sampled { multi, .. } | ImageClass::Depth { multi } => {
write!(self.out, "textureSize(")?;
self.write_expr(image, ctx)?;
if let Some(expr) = level {
let cast_to_int = matches!(
*ctx.resolve_type(expr, &self.module.types),
TypeInner::Scalar(crate::Scalar {
kind: crate::ScalarKind::Uint,
..
})
);
write!(self.out, ", ")?;
if cast_to_int {
write!(self.out, "int(")?;
}
self.write_expr(expr, ctx)?;
if cast_to_int {
write!(self.out, ")")?;
}
} else if !multi {
// All textureSize calls requires an lod argument
// except for multisampled samplers
write!(self.out, ", 0")?;
}
}
ImageClass::Storage { .. } => {
write!(self.out, "imageSize(")?;
self.write_expr(image, ctx)?;
}
}
write!(self.out, ")")?;
if components != 1 || self.options.version.is_es() {
write!(self.out, ".{}", &"xyz"[..components])?;
}
}
crate::ImageQuery::NumLevels => {
write!(self.out, "textureQueryLevels(",)?;
self.write_expr(image, ctx)?;
write!(self.out, ")",)?;
}
crate::ImageQuery::NumLayers => {
let fun_name = match class {
ImageClass::Sampled { .. } | ImageClass::Depth { .. } => "textureSize",
ImageClass::Storage { .. } => "imageSize",
};
write!(self.out, "{fun_name}(")?;
self.write_expr(image, ctx)?;
// All textureSize calls requires an lod argument
// except for multisampled samplers
if !class.is_multisampled() {
write!(self.out, ", 0")?;
}
write!(self.out, ")")?;
if components != 1 || self.options.version.is_es() {
write!(self.out, ".{}", back::COMPONENTS[components])?;
}
}
crate::ImageQuery::NumSamples => {
let fun_name = match class {
ImageClass::Sampled { .. } | ImageClass::Depth { .. } => {
"textureSamples"
}
ImageClass::Storage { .. } => "imageSamples",
};
write!(self.out, "{fun_name}(")?;
self.write_expr(image, ctx)?;
write!(self.out, ")",)?;
}
}
write!(self.out, ")")?;
}
Expression::Unary { op, expr } => {
let operator_or_fn = match op {
crate::UnaryOperator::Negate => "-",
crate::UnaryOperator::LogicalNot => {
match *ctx.resolve_type(expr, &self.module.types) {
TypeInner::Vector { .. } => "not",
_ => "!",
}
}
crate::UnaryOperator::BitwiseNot => "~",
};
write!(self.out, "{operator_or_fn}(")?;
self.write_expr(expr, ctx)?;
write!(self.out, ")")?
}
// `Binary` we just write `left op right`, except when dealing with
// comparison operations on vectors as they are implemented with
// builtin functions.
// Once again we wrap everything in parentheses to avoid precedence issues
Expression::Binary {
mut op,
left,
right,
} => {
// Holds `Some(function_name)` if the binary operation is
// implemented as a function call
use crate::{BinaryOperator as Bo, ScalarKind as Sk, TypeInner as Ti};
let left_inner = ctx.resolve_type(left, &self.module.types);
let right_inner = ctx.resolve_type(right, &self.module.types);
let function = match (left_inner, right_inner) {
(&Ti::Vector { scalar, .. }, &Ti::Vector { .. }) => match op {
Bo::Less
| Bo::LessEqual
| Bo::Greater
| Bo::GreaterEqual
| Bo::Equal
| Bo::NotEqual => BinaryOperation::VectorCompare,
Bo::Modulo if scalar.kind == Sk::Float => BinaryOperation::Modulo,
Bo::And if scalar.kind == Sk::Bool => {
op = crate::BinaryOperator::LogicalAnd;
BinaryOperation::VectorComponentWise
}
Bo::InclusiveOr if scalar.kind == Sk::Bool => {
op = crate::BinaryOperator::LogicalOr;
BinaryOperation::VectorComponentWise
}
_ => BinaryOperation::Other,
},
_ => match (left_inner.scalar_kind(), right_inner.scalar_kind()) {
(Some(Sk::Float), _) | (_, Some(Sk::Float)) => match op {
Bo::Modulo => BinaryOperation::Modulo,
_ => BinaryOperation::Other,
},
(Some(Sk::Bool), Some(Sk::Bool)) => match op {
Bo::InclusiveOr => {
op = crate::BinaryOperator::LogicalOr;
BinaryOperation::Other
}
Bo::And => {
op = crate::BinaryOperator::LogicalAnd;
BinaryOperation::Other
}
_ => BinaryOperation::Other,
},
_ => BinaryOperation::Other,
},
};
match function {
BinaryOperation::VectorCompare => {
let op_str = match op {
Bo::Less => "lessThan(",
Bo::LessEqual => "lessThanEqual(",
Bo::Greater => "greaterThan(",
Bo::GreaterEqual => "greaterThanEqual(",
Bo::Equal => "equal(",
Bo::NotEqual => "notEqual(",
_ => unreachable!(),
};
write!(self.out, "{op_str}")?;
self.write_expr(left, ctx)?;
write!(self.out, ", ")?;
self.write_expr(right, ctx)?;
write!(self.out, ")")?;
}
BinaryOperation::VectorComponentWise => {
self.write_value_type(left_inner)?;
write!(self.out, "(")?;
let size = match *left_inner {
Ti::Vector { size, .. } => size,
_ => unreachable!(),
};
for i in 0..size as usize {
if i != 0 {
write!(self.out, ", ")?;
}
self.write_expr(left, ctx)?;
write!(self.out, ".{}", back::COMPONENTS[i])?;
write!(self.out, " {} ", back::binary_operation_str(op))?;
self.write_expr(right, ctx)?;
write!(self.out, ".{}", back::COMPONENTS[i])?;
}
write!(self.out, ")")?;
}
// TODO: handle undefined behavior of BinaryOperator::Modulo
//
// sint:
// if right == 0 return 0
// if left == min(type_of(left)) && right == -1 return 0
// if sign(left) == -1 || sign(right) == -1 return result as defined by WGSL
//
// uint:
// if right == 0 return 0
//
// float:
// if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798
BinaryOperation::Modulo => {
write!(self.out, "(")?;
// write `e1 - e2 * trunc(e1 / e2)`
self.write_expr(left, ctx)?;
write!(self.out, " - ")?;
self.write_expr(right, ctx)?;
write!(self.out, " * ")?;
write!(self.out, "trunc(")?;
self.write_expr(left, ctx)?;
write!(self.out, " / ")?;
self.write_expr(right, ctx)?;
write!(self.out, ")")?;
write!(self.out, ")")?;
}
BinaryOperation::Other => {
write!(self.out, "(")?;
self.write_expr(left, ctx)?;
write!(self.out, " {} ", back::binary_operation_str(op))?;
self.write_expr(right, ctx)?;
write!(self.out, ")")?;
}
}
}
// `Select` is written as `condition ? accept : reject`
// We wrap everything in parentheses to avoid precedence issues
Expression::Select {
condition,
accept,
reject,
} => {
let cond_ty = ctx.resolve_type(condition, &self.module.types);
let vec_select = if let TypeInner::Vector { .. } = *cond_ty {
true
} else {
false
};
// TODO: Boolean mix on desktop required GL_EXT_shader_integer_mix
if vec_select {
// Glsl defines that for mix when the condition is a boolean the first element
// is picked if condition is false and the second if condition is true
write!(self.out, "mix(")?;
self.write_expr(reject, ctx)?;
write!(self.out, ", ")?;
self.write_expr(accept, ctx)?;
write!(self.out, ", ")?;
self.write_expr(condition, ctx)?;
} else {
write!(self.out, "(")?;
self.write_expr(condition, ctx)?;
write!(self.out, " ? ")?;
self.write_expr(accept, ctx)?;
write!(self.out, " : ")?;
self.write_expr(reject, ctx)?;
}
write!(self.out, ")")?
}
// `Derivative` is a function call to a glsl provided function
Expression::Derivative { axis, ctrl, expr } => {
use crate::{DerivativeAxis as Axis, DerivativeControl as Ctrl};
let fun_name = if self.options.version.supports_derivative_control() {
match (axis, ctrl) {
(Axis::X, Ctrl::Coarse) => "dFdxCoarse",
(Axis::X, Ctrl::Fine) => "dFdxFine",
(Axis::X, Ctrl::None) => "dFdx",
(Axis::Y, Ctrl::Coarse) => "dFdyCoarse",
(Axis::Y, Ctrl::Fine) => "dFdyFine",
(Axis::Y, Ctrl::None) => "dFdy",
(Axis::Width, Ctrl::Coarse) => "fwidthCoarse",
(Axis::Width, Ctrl::Fine) => "fwidthFine",
(Axis::Width, Ctrl::None) => "fwidth",
}
} else {
match axis {
Axis::X => "dFdx",
Axis::Y => "dFdy",
Axis::Width => "fwidth",
}
};
write!(self.out, "{fun_name}(")?;
self.write_expr(expr, ctx)?;
write!(self.out, ")")?
}
// `Relational` is a normal function call to some glsl provided functions
Expression::Relational { fun, argument } => {
use crate::RelationalFunction as Rf;
let fun_name = match fun {
Rf::IsInf => "isinf",
Rf::IsNan => "isnan",
Rf::All => "all",
Rf::Any => "any",
};
write!(self.out, "{fun_name}(")?;
self.write_expr(argument, ctx)?;
write!(self.out, ")")?
}
Expression::Math {
fun,
arg,
arg1,
arg2,
arg3,
} => {
use crate::MathFunction as Mf;
let fun_name = match fun {
// comparison
Mf::Abs => "abs",
Mf::Min => "min",
Mf::Max => "max",
Mf::Clamp => {
let scalar_kind = ctx
.resolve_type(arg, &self.module.types)
.scalar_kind()
.unwrap();
match scalar_kind {
crate::ScalarKind::Float => "clamp",
// Clamp is undefined if min > max. In practice this means it can use a median-of-three
// instruction to determine the value. This is fine according to the WGSL spec for float
// clamp, but integer clamp _must_ use min-max. As such we write out min/max.
_ => {
write!(self.out, "min(max(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ", ")?;
self.write_expr(arg1.unwrap(), ctx)?;
write!(self.out, "), ")?;
self.write_expr(arg2.unwrap(), ctx)?;
write!(self.out, ")")?;
return Ok(());
}
}
}
Mf::Saturate => {
write!(self.out, "clamp(")?;
self.write_expr(arg, ctx)?;
match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Vector { size, .. } => write!(
self.out,
", vec{}(0.0), vec{0}(1.0)",
back::vector_size_str(size)
)?,
_ => write!(self.out, ", 0.0, 1.0")?,
}
write!(self.out, ")")?;
return Ok(());
}
// trigonometry
Mf::Cos => "cos",
Mf::Cosh => "cosh",
Mf::Sin => "sin",
Mf::Sinh => "sinh",
Mf::Tan => "tan",
Mf::Tanh => "tanh",
Mf::Acos => "acos",
Mf::Asin => "asin",
Mf::Atan => "atan",
Mf::Asinh => "asinh",
Mf::Acosh => "acosh",
Mf::Atanh => "atanh",
Mf::Radians => "radians",
Mf::Degrees => "degrees",
// glsl doesn't have atan2 function
// use two-argument variation of the atan function
Mf::Atan2 => "atan",
// decomposition
Mf::Ceil => "ceil",
Mf::Floor => "floor",
Mf::Round => "roundEven",
Mf::Fract => "fract",
Mf::Trunc => "trunc",
Mf::Modf => MODF_FUNCTION,
Mf::Frexp => FREXP_FUNCTION,
Mf::Ldexp => "ldexp",
// exponent
Mf::Exp => "exp",
Mf::Exp2 => "exp2",
Mf::Log => "log",
Mf::Log2 => "log2",
Mf::Pow => "pow",
// geometry
Mf::Dot => match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Vector {
scalar:
crate::Scalar {
kind: crate::ScalarKind::Float,
..
},
..
} => "dot",
TypeInner::Vector { size, .. } => {
return self.write_dot_product(arg, arg1.unwrap(), size as usize, ctx)
}
_ => unreachable!(
"Correct TypeInner for dot product should be already validated"
),
},
Mf::Outer => "outerProduct",
Mf::Cross => "cross",
Mf::Distance => "distance",
Mf::Length => "length",
Mf::Normalize => "normalize",
Mf::FaceForward => "faceforward",
Mf::Reflect => "reflect",
Mf::Refract => "refract",
// computational
Mf::Sign => "sign",
Mf::Fma => {
if self.options.version.supports_fma_function() {
// Use the fma function when available
"fma"
} else {
// No fma support. Transform the function call into an arithmetic expression
write!(self.out, "(")?;
self.write_expr(arg, ctx)?;
write!(self.out, " * ")?;
let arg1 =
arg1.ok_or_else(|| Error::Custom("Missing fma arg1".to_owned()))?;
self.write_expr(arg1, ctx)?;
write!(self.out, " + ")?;
let arg2 =
arg2.ok_or_else(|| Error::Custom("Missing fma arg2".to_owned()))?;
self.write_expr(arg2, ctx)?;
write!(self.out, ")")?;
return Ok(());
}
}
Mf::Mix => "mix",
Mf::Step => "step",
Mf::SmoothStep => "smoothstep",
Mf::Sqrt => "sqrt",
Mf::InverseSqrt => "inversesqrt",
Mf::Inverse => "inverse",
Mf::Transpose => "transpose",
Mf::Determinant => "determinant",
Mf::QuantizeToF16 => match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Scalar { .. } => {
write!(self.out, "unpackHalf2x16(packHalf2x16(vec2(")?;
self.write_expr(arg, ctx)?;
write!(self.out, "))).x")?;
return Ok(());
}
TypeInner::Vector {
size: crate::VectorSize::Bi,
..
} => {
write!(self.out, "unpackHalf2x16(packHalf2x16(")?;
self.write_expr(arg, ctx)?;
write!(self.out, "))")?;
return Ok(());
}
TypeInner::Vector {
size: crate::VectorSize::Tri,
..
} => {
write!(self.out, "vec3(unpackHalf2x16(packHalf2x16(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ".zz)).x)")?;
return Ok(());
}
TypeInner::Vector {
size: crate::VectorSize::Quad,
..
} => {
write!(self.out, "vec4(unpackHalf2x16(packHalf2x16(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ".zw)))")?;
return Ok(());
}
_ => unreachable!(
"Correct TypeInner for QuantizeToF16 should be already validated"
),
},
// bits
Mf::CountTrailingZeros => {
match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Vector { size, scalar, .. } => {
let s = back::vector_size_str(size);
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "min(uvec{s}(findLSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")), uvec{s}(32u))")?;
} else {
write!(self.out, "ivec{s}(min(uvec{s}(findLSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")), uvec{s}(32u)))")?;
}
}
TypeInner::Scalar(scalar) => {
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "min(uint(findLSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")), 32u)")?;
} else {
write!(self.out, "int(min(uint(findLSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")), 32u))")?;
}
}
_ => unreachable!(),
};
return Ok(());
}
Mf::CountLeadingZeros => {
if self.options.version.supports_integer_functions() {
match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Vector { size, scalar } => {
let s = back::vector_size_str(size);
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "uvec{s}(ivec{s}(31) - findMSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, "))")?;
} else {
write!(self.out, "mix(ivec{s}(31) - findMSB(")?;
self.write_expr(arg, ctx)?;
write!(self.out, "), ivec{s}(0), lessThan(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ", ivec{s}(0)))")?;
}
}
TypeInner::Scalar(scalar) => {
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "uint(31 - findMSB(")?;
} else {
write!(self.out, "(")?;
self.write_expr(arg, ctx)?;
write!(self.out, " < 0 ? 0 : 31 - findMSB(")?;
}
self.write_expr(arg, ctx)?;
write!(self.out, "))")?;
}
_ => unreachable!(),
};
} else {
match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Vector { size, scalar } => {
let s = back::vector_size_str(size);
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "uvec{s}(")?;
write!(self.out, "vec{s}(31.0) - floor(log2(vec{s}(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ") + 0.5)))")?;
} else {
write!(self.out, "ivec{s}(")?;
write!(self.out, "mix(vec{s}(31.0) - floor(log2(vec{s}(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ") + 0.5)), ")?;
write!(self.out, "vec{s}(0.0), lessThan(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ", ivec{s}(0u))))")?;
}
}
TypeInner::Scalar(scalar) => {
if let crate::ScalarKind::Uint = scalar.kind {
write!(self.out, "uint(31.0 - floor(log2(float(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ") + 0.5)))")?;
} else {
write!(self.out, "(")?;
self.write_expr(arg, ctx)?;
write!(self.out, " < 0 ? 0 : int(")?;
write!(self.out, "31.0 - floor(log2(float(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ") + 0.5))))")?;
}
}
_ => unreachable!(),
};
}
return Ok(());
}
Mf::CountOneBits => "bitCount",
Mf::ReverseBits => "bitfieldReverse",
Mf::ExtractBits => {
// The behavior of ExtractBits is undefined when offset + count > bit_width. We need
// to first sanitize the offset and count first. If we don't do this, AMD and Intel chips
// will return out-of-spec values if the extracted range is not within the bit width.
//
// This encodes the exact formula specified by the wgsl spec, without temporary values:
// https://gpuweb.github.io/gpuweb/wgsl/#extractBits-unsigned-builtin
//
// w = sizeof(x) * 8
// o = min(offset, w)
// c = min(count, w - o)
//
// bitfieldExtract(x, o, c)
//
// extract_bits(e, min(offset, w), min(count, w - min(offset, w))))
let scalar_bits = ctx
.resolve_type(arg, &self.module.types)
.scalar_width()
.unwrap()
* 8;
write!(self.out, "bitfieldExtract(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ", int(min(")?;
self.write_expr(arg1.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u)), int(min(",)?;
self.write_expr(arg2.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u - min(")?;
self.write_expr(arg1.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u))))")?;
return Ok(());
}
Mf::InsertBits => {
// InsertBits has the same considerations as ExtractBits above
let scalar_bits = ctx
.resolve_type(arg, &self.module.types)
.scalar_width()
.unwrap()
* 8;
write!(self.out, "bitfieldInsert(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ", ")?;
self.write_expr(arg1.unwrap(), ctx)?;
write!(self.out, ", int(min(")?;
self.write_expr(arg2.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u)), int(min(",)?;
self.write_expr(arg3.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u - min(")?;
self.write_expr(arg2.unwrap(), ctx)?;
write!(self.out, ", {scalar_bits}u))))")?;
return Ok(());
}
Mf::FirstTrailingBit => "findLSB",
Mf::FirstLeadingBit => "findMSB",
// data packing
Mf::Pack4x8snorm => "packSnorm4x8",
Mf::Pack4x8unorm => "packUnorm4x8",
Mf::Pack2x16snorm => "packSnorm2x16",
Mf::Pack2x16unorm => "packUnorm2x16",
Mf::Pack2x16float => "packHalf2x16",
fun @ (Mf::Pack4xI8 | Mf::Pack4xU8) => {
let was_signed = match fun {
Mf::Pack4xI8 => true,
Mf::Pack4xU8 => false,
_ => unreachable!(),
};
let const_suffix = if was_signed { "" } else { "u" };
if was_signed {
write!(self.out, "uint(")?;
}
write!(self.out, "(")?;
self.write_expr(arg, ctx)?;
write!(self.out, "[0] & 0xFF{const_suffix}) | ((")?;
self.write_expr(arg, ctx)?;
write!(self.out, "[1] & 0xFF{const_suffix}) << 8) | ((")?;
self.write_expr(arg, ctx)?;
write!(self.out, "[2] & 0xFF{const_suffix}) << 16) | ((")?;
self.write_expr(arg, ctx)?;
write!(self.out, "[3] & 0xFF{const_suffix}) << 24)")?;
if was_signed {
write!(self.out, ")")?;
}
return Ok(());
}
// data unpacking
Mf::Unpack4x8snorm => "unpackSnorm4x8",
Mf::Unpack4x8unorm => "unpackUnorm4x8",
Mf::Unpack2x16snorm => "unpackSnorm2x16",
Mf::Unpack2x16unorm => "unpackUnorm2x16",
Mf::Unpack2x16float => "unpackHalf2x16",
fun @ (Mf::Unpack4xI8 | Mf::Unpack4xU8) => {
let sign_prefix = match fun {
Mf::Unpack4xI8 => 'i',
Mf::Unpack4xU8 => 'u',
_ => unreachable!(),
};
write!(self.out, "{sign_prefix}vec4(")?;
for i in 0..4 {
write!(self.out, "bitfieldExtract(")?;
// Since bitfieldExtract only sign extends if the value is signed, this
// cast is needed
match fun {
Mf::Unpack4xI8 => {
write!(self.out, "int(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")")?;
}
Mf::Unpack4xU8 => self.write_expr(arg, ctx)?,
_ => unreachable!(),
};
write!(self.out, ", {}, 8)", i * 8)?;
if i != 3 {
write!(self.out, ", ")?;
}
}
write!(self.out, ")")?;
return Ok(());
}
};
let extract_bits = fun == Mf::ExtractBits;
let insert_bits = fun == Mf::InsertBits;
// Some GLSL functions always return signed integers (like findMSB),
// so they need to be cast to uint if the argument is also an uint.
let ret_might_need_int_to_uint = matches!(
fun,
Mf::FirstTrailingBit | Mf::FirstLeadingBit | Mf::CountOneBits | Mf::Abs
);
// Some GLSL functions only accept signed integers (like abs),
// so they need their argument cast from uint to int.
let arg_might_need_uint_to_int = matches!(fun, Mf::Abs);
// Check if the argument is an unsigned integer and return the vector size
// in case it's a vector
let maybe_uint_size = match *ctx.resolve_type(arg, &self.module.types) {
TypeInner::Scalar(crate::Scalar {
kind: crate::ScalarKind::Uint,
..
}) => Some(None),
TypeInner::Vector {
scalar:
crate::Scalar {
kind: crate::ScalarKind::Uint,
..
},
size,
} => Some(Some(size)),
_ => None,
};
// Cast to uint if the function needs it
if ret_might_need_int_to_uint {
if let Some(maybe_size) = maybe_uint_size {
match maybe_size {
Some(size) => write!(self.out, "uvec{}(", size as u8)?,
None => write!(self.out, "uint(")?,
}
}
}
write!(self.out, "{fun_name}(")?;
// Cast to int if the function needs it
if arg_might_need_uint_to_int {
if let Some(maybe_size) = maybe_uint_size {
match maybe_size {
Some(size) => write!(self.out, "ivec{}(", size as u8)?,
None => write!(self.out, "int(")?,
}
}
}
self.write_expr(arg, ctx)?;
// Close the cast from uint to int
if arg_might_need_uint_to_int && maybe_uint_size.is_some() {
write!(self.out, ")")?
}
if let Some(arg) = arg1 {
write!(self.out, ", ")?;
if extract_bits {
write!(self.out, "int(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")")?;
} else {
self.write_expr(arg, ctx)?;
}
}
if let Some(arg) = arg2 {
write!(self.out, ", ")?;
if extract_bits || insert_bits {
write!(self.out, "int(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")")?;
} else {
self.write_expr(arg, ctx)?;
}
}
if let Some(arg) = arg3 {
write!(self.out, ", ")?;
if insert_bits {
write!(self.out, "int(")?;
self.write_expr(arg, ctx)?;
write!(self.out, ")")?;
} else {
self.write_expr(arg, ctx)?;
}
}
write!(self.out, ")")?;
// Close the cast from int to uint
if ret_might_need_int_to_uint && maybe_uint_size.is_some() {
write!(self.out, ")")?
}
}
// `As` is always a call.
// If `convert` is true the function name is the type
// Else the function name is one of the glsl provided bitcast functions
Expression::As {
expr,
kind: target_kind,
convert,
} => {
let inner = ctx.resolve_type(expr, &self.module.types);
match convert {
Some(width) => {
// this is similar to `write_type`, but with the target kind
let scalar = glsl_scalar(crate::Scalar {
kind: target_kind,
width,
})?;
match *inner {
TypeInner::Matrix { columns, rows, .. } => write!(
self.out,
"{}mat{}x{}",
scalar.prefix, columns as u8, rows as u8
)?,
TypeInner::Vector { size, .. } => {
write!(self.out, "{}vec{}", scalar.prefix, size as u8)?
}
_ => write!(self.out, "{}", scalar.full)?,
}
write!(self.out, "(")?;
self.write_expr(expr, ctx)?;
write!(self.out, ")")?
}
None => {
use crate::ScalarKind as Sk;
let target_vector_type = match *inner {
TypeInner::Vector { size, scalar } => Some(TypeInner::Vector {
size,
scalar: crate::Scalar {
kind: target_kind,
width: scalar.width,
},
}),
_ => None,
};
let source_kind = inner.scalar_kind().unwrap();
match (source_kind, target_kind, target_vector_type) {
// No conversion needed
(Sk::Sint, Sk::Sint, _)
| (Sk::Uint, Sk::Uint, _)
| (Sk::Float, Sk::Float, _)
| (Sk::Bool, Sk::Bool, _) => {
self.write_expr(expr, ctx)?;
return Ok(());
}
// Cast to/from floats
(Sk::Float, Sk::Sint, _) => write!(self.out, "floatBitsToInt")?,
(Sk::Float, Sk::Uint, _) => write!(self.out, "floatBitsToUint")?,
(Sk::Sint, Sk::Float, _) => write!(self.out, "intBitsToFloat")?,
(Sk::Uint, Sk::Float, _) => write!(self.out, "uintBitsToFloat")?,
// Cast between vector types
(_, _, Some(vector)) => {
self.write_value_type(&vector)?;
}
// There is no way to bitcast between Uint/Sint in glsl. Use constructor conversion
(Sk::Uint | Sk::Bool, Sk::Sint, None) => write!(self.out, "int")?,
(Sk::Sint | Sk::Bool, Sk::Uint, None) => write!(self.out, "uint")?,
(Sk::Bool, Sk::Float, None) => write!(self.out, "float")?,
(Sk::Sint | Sk::Uint | Sk::Float, Sk::Bool, None) => {
write!(self.out, "bool")?
}
(Sk::AbstractInt | Sk::AbstractFloat, _, _)
| (_, Sk::AbstractInt | Sk::AbstractFloat, _) => unreachable!(),
};
write!(self.out, "(")?;
self.write_expr(expr, ctx)?;
write!(self.out, ")")?;
}
}
}
// These expressions never show up in `Emit`.
Expression::CallResult(_)
| Expression::AtomicResult { .. }
| Expression::RayQueryProceedResult
| Expression::WorkGroupUniformLoadResult { .. }
| Expression::SubgroupOperationResult { .. }
| Expression::SubgroupBallotResult => unreachable!(),
// `ArrayLength` is written as `expr.length()` and we convert it to a uint
Expression::ArrayLength(expr) => {
write!(self.out, "uint(")?;
self.write_expr(expr, ctx)?;
write!(self.out, ".length())")?
}
// not supported yet
Expression::RayQueryGetIntersection { .. } => unreachable!(),
}
Ok(())
}
/// Helper function to write the local holding the clamped lod
fn write_clamped_lod(
&mut self,
ctx: &back::FunctionCtx,
expr: Handle<crate::Expression>,
image: Handle<crate::Expression>,
level_expr: Handle<crate::Expression>,
) -> Result<(), Error> {
// Define our local and start a call to `clamp`
write!(
self.out,
"int {}{} = clamp(",
Baked(expr),
CLAMPED_LOD_SUFFIX
)?;
// Write the lod that will be clamped
self.write_expr(level_expr, ctx)?;
// Set the min value to 0 and start a call to `textureQueryLevels` to get
// the maximum value
write!(self.out, ", 0, textureQueryLevels(")?;
// Write the target image as an argument to `textureQueryLevels`
self.write_expr(image, ctx)?;
// Close the call to `textureQueryLevels` subtract 1 from it since
// the lod argument is 0 based, close the `clamp` call and end the
// local declaration statement.
writeln!(self.out, ") - 1);")?;
Ok(())
}
// Helper method used to retrieve how many elements a coordinate vector
// for the images operations need.
fn get_coordinate_vector_size(&self, dim: crate::ImageDimension, arrayed: bool) -> u8 {
// openGL es doesn't have 1D images so we need workaround it
let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
// Get how many components the coordinate vector needs for the dimensions only
let tex_coord_size = match dim {
crate::ImageDimension::D1 => 1,
crate::ImageDimension::D2 => 2,
crate::ImageDimension::D3 => 3,
crate::ImageDimension::Cube => 2,
};
// Calculate the true size of the coordinate vector by adding 1 for arrayed images
// and another 1 if we need to workaround 1D images by making them 2D
tex_coord_size + tex_1d_hack as u8 + arrayed as u8
}
/// Helper method to write the coordinate vector for image operations
fn write_texture_coord(
&mut self,
ctx: &back::FunctionCtx,
vector_size: u8,
coordinate: Handle<crate::Expression>,
array_index: Option<Handle<crate::Expression>>,
// Emulate 1D images as 2D for profiles that don't support it (glsl es)
tex_1d_hack: bool,
) -> Result<(), Error> {
match array_index {
// If the image needs an array indice we need to add it to the end of our
// coordinate vector, to do so we will use the `ivec(ivec, scalar)`
// constructor notation (NOTE: the inner `ivec` can also be a scalar, this
// is important for 1D arrayed images).
Some(layer_expr) => {
write!(self.out, "ivec{vector_size}(")?;
self.write_expr(coordinate, ctx)?;
write!(self.out, ", ")?;
// If we are replacing sampler1D with sampler2D we also need
// to add another zero to the coordinates vector for the y component
if tex_1d_hack {
write!(self.out, "0, ")?;
}
self.write_expr(layer_expr, ctx)?;
write!(self.out, ")")?;
}
// Otherwise write just the expression (and the 1D hack if needed)
None => {
let uvec_size = match *ctx.resolve_type(coordinate, &self.module.types) {
TypeInner::Scalar(crate::Scalar {
kind: crate::ScalarKind::Uint,
..
}) => Some(None),
TypeInner::Vector {
size,
scalar:
crate::Scalar {
kind: crate::ScalarKind::Uint,
..
},
} => Some(Some(size as u32)),
_ => None,
};
if tex_1d_hack {
write!(self.out, "ivec2(")?;
} else if uvec_size.is_some() {
match uvec_size {
Some(None) => write!(self.out, "int(")?,
Some(Some(size)) => write!(self.out, "ivec{size}(")?,
_ => {}
}
}
self.write_expr(coordinate, ctx)?;
if tex_1d_hack {
write!(self.out, ", 0)")?;
} else if uvec_size.is_some() {
write!(self.out, ")")?;
}
}
}
Ok(())
}
/// Helper method to write the `ImageStore` statement
fn write_image_store(
&mut self,
ctx: &back::FunctionCtx,
image: Handle<crate::Expression>,
coordinate: Handle<crate::Expression>,
array_index: Option<Handle<crate::Expression>>,
value: Handle<crate::Expression>,
) -> Result<(), Error> {
use crate::ImageDimension as IDim;
// NOTE: openGL requires that `imageStore`s have no effects when the texel is invalid
// so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
// This will only panic if the module is invalid
let dim = match *ctx.resolve_type(image, &self.module.types) {
TypeInner::Image { dim, .. } => dim,
_ => unreachable!(),
};
// Begin our call to `imageStore`
write!(self.out, "imageStore(")?;
self.write_expr(image, ctx)?;
// Separate the image argument from the coordinates
write!(self.out, ", ")?;
// openGL es doesn't have 1D images so we need workaround it
let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
// Write the coordinate vector
self.write_texture_coord(
ctx,
// Get the size of the coordinate vector
self.get_coordinate_vector_size(dim, array_index.is_some()),
coordinate,
array_index,
tex_1d_hack,
)?;
// Separate the coordinate from the value to write and write the expression
// of the value to write.
write!(self.out, ", ")?;
self.write_expr(value, ctx)?;
// End the call to `imageStore` and the statement.
writeln!(self.out, ");")?;
Ok(())
}
/// Helper method to write the `ImageAtomic` statement
fn write_image_atomic(
&mut self,
ctx: &back::FunctionCtx,
image: Handle<crate::Expression>,
coordinate: Handle<crate::Expression>,
array_index: Option<Handle<crate::Expression>>,
fun: crate::AtomicFunction,
value: Handle<crate::Expression>,
) -> Result<(), Error> {
use crate::ImageDimension as IDim;
// NOTE: openGL requires that `imageAtomic`s have no effects when the texel is invalid
// so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
// This will only panic if the module is invalid
let dim = match *ctx.resolve_type(image, &self.module.types) {
TypeInner::Image { dim, .. } => dim,
_ => unreachable!(),
};
// Begin our call to `imageAtomic`
let fun_str = fun.to_glsl();
write!(self.out, "imageAtomic{fun_str}(")?;
self.write_expr(image, ctx)?;
// Separate the image argument from the coordinates
write!(self.out, ", ")?;
// openGL es doesn't have 1D images so we need workaround it
let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
// Write the coordinate vector
self.write_texture_coord(
ctx,
// Get the size of the coordinate vector
self.get_coordinate_vector_size(dim, false),
coordinate,
array_index,
tex_1d_hack,
)?;
// Separate the coordinate from the value to write and write the expression
// of the value to write.
write!(self.out, ", ")?;
self.write_expr(value, ctx)?;
// End the call to `imageAtomic` and the statement.
writeln!(self.out, ");")?;
Ok(())
}
/// Helper method for writing an `ImageLoad` expression.
#[allow(clippy::too_many_arguments)]
fn write_image_load(
&mut self,
handle: Handle<crate::Expression>,
ctx: &back::FunctionCtx,
image: Handle<crate::Expression>,
coordinate: Handle<crate::Expression>,
array_index: Option<Handle<crate::Expression>>,
sample: Option<Handle<crate::Expression>>,
level: Option<Handle<crate::Expression>>,
) -> Result<(), Error> {
use crate::ImageDimension as IDim;
// `ImageLoad` is a bit complicated.
// There are two functions one for sampled
// images another for storage images, the former uses `texelFetch` and the
// latter uses `imageLoad`.
//
// Furthermore we have `level` which is always `Some` for sampled images
// and `None` for storage images, so we end up with two functions:
// - `texelFetch(image, coordinate, level)` for sampled images
// - `imageLoad(image, coordinate)` for storage images
//
// Finally we also have to consider bounds checking, for storage images
// this is easy since openGL requires that invalid texels always return
// 0, for sampled images we need to either verify that all arguments are
// in bounds (`ReadZeroSkipWrite`) or make them a valid texel (`Restrict`).
// This will only panic if the module is invalid
let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
TypeInner::Image {
dim,
arrayed: _,
class,
} => (dim, class),
_ => unreachable!(),
};
// Get the name of the function to be used for the load operation
// and the policy to be used with it.
let (fun_name, policy) = match class {
// Sampled images inherit the policy from the user passed policies
crate::ImageClass::Sampled { .. } => ("texelFetch", self.policies.image_load),
crate::ImageClass::Storage { .. } => {
// OpenGL ES 3.1 mentions in Chapter "8.22 Texture Image Loads and Stores" that:
// "Invalid image loads will return a vector where the value of R, G, and B components
// is 0 and the value of the A component is undefined."
//
// OpenGL 4.2 Core mentions in Chapter "3.9.20 Texture Image Loads and Stores" that:
// "Invalid image loads will return zero."
//
// So, we only inject bounds checks for ES
let policy = if self.options.version.is_es() {
self.policies.image_load
} else {
proc::BoundsCheckPolicy::Unchecked
};
("imageLoad", policy)
}
// TODO: Is there even a function for this?
crate::ImageClass::Depth { multi: _ } => {
return Err(Error::Custom(
"WGSL `textureLoad` from depth textures is not supported in GLSL".to_string(),
))
}
};
// openGL es doesn't have 1D images so we need workaround it
let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
// Get the size of the coordinate vector
let vector_size = self.get_coordinate_vector_size(dim, array_index.is_some());
if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
// To write the bounds checks for `ReadZeroSkipWrite` we will use a
// ternary operator since we are in the middle of an expression and
// need to return a value.
//
// NOTE: glsl does short circuit when evaluating logical
// expressions so we can be sure that after we test a
// condition it will be true for the next ones
// Write parentheses around the ternary operator to prevent problems with
// expressions emitted before or after it having more precedence
write!(self.out, "(",)?;
// The lod check needs to precede the size check since we need
// to use the lod to get the size of the image at that level.
if let Some(level_expr) = level {
self.write_expr(level_expr, ctx)?;
write!(self.out, " < textureQueryLevels(",)?;
self.write_expr(image, ctx)?;
// Chain the next check
write!(self.out, ") && ")?;
}
// Check that the sample arguments doesn't exceed the number of samples
if let Some(sample_expr) = sample {
self.write_expr(sample_expr, ctx)?;
write!(self.out, " < textureSamples(",)?;
self.write_expr(image, ctx)?;
// Chain the next check
write!(self.out, ") && ")?;
}
// We now need to write the size checks for the coordinates and array index
// first we write the comparison function in case the image is 1D non arrayed
// (and no 1D to 2D hack was needed) we are comparing scalars so the less than
// operator will suffice, but otherwise we'll be comparing two vectors so we'll
// need to use the `lessThan` function but it returns a vector of booleans (one
// for each comparison) so we need to fold it all in one scalar boolean, since
// we want all comparisons to pass we use the `all` function which will only
// return `true` if all the elements of the boolean vector are also `true`.
//
// So we'll end with one of the following forms
// - `coord < textureSize(image, lod)` for 1D images
// - `all(lessThan(coord, textureSize(image, lod)))` for normal images
// - `all(lessThan(ivec(coord, array_index), textureSize(image, lod)))`
// for arrayed images
// - `all(lessThan(coord, textureSize(image)))` for multi sampled images
if vector_size != 1 {
write!(self.out, "all(lessThan(")?;
}
// Write the coordinate vector
self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
if vector_size != 1 {
// If we used the `lessThan` function we need to separate the
// coordinates from the image size.
write!(self.out, ", ")?;
} else {
// If we didn't use it (ie. 1D images) we perform the comparison
// using the less than operator.
write!(self.out, " < ")?;
}
// Call `textureSize` to get our image size
write!(self.out, "textureSize(")?;
self.write_expr(image, ctx)?;
// `textureSize` uses the lod as a second argument for mipmapped images
if let Some(level_expr) = level {
// Separate the image from the lod
write!(self.out, ", ")?;
self.write_expr(level_expr, ctx)?;
}
// Close the `textureSize` call
write!(self.out, ")")?;
if vector_size != 1 {
// Close the `all` and `lessThan` calls
write!(self.out, "))")?;
}
// Finally end the condition part of the ternary operator
write!(self.out, " ? ")?;
}
// Begin the call to the function used to load the texel
write!(self.out, "{fun_name}(")?;
self.write_expr(image, ctx)?;
write!(self.out, ", ")?;
// If we are using `Restrict` bounds checking we need to pass valid texel
// coordinates, to do so we use the `clamp` function to get a value between
// 0 and the image size - 1 (indexing begins at 0)
if let proc::BoundsCheckPolicy::Restrict = policy {
write!(self.out, "clamp(")?;
}
// Write the coordinate vector
self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
// If we are using `Restrict` bounds checking we need to write the rest of the
// clamp we initiated before writing the coordinates.
if let proc::BoundsCheckPolicy::Restrict = policy {
// Write the min value 0
if vector_size == 1 {
write!(self.out, ", 0")?;
} else {
write!(self.out, ", ivec{vector_size}(0)")?;
}
// Start the `textureSize` call to use as the max value.
write!(self.out, ", textureSize(")?;
self.write_expr(image, ctx)?;
// If the image is mipmapped we need to add the lod argument to the
// `textureSize` call, but this needs to be the clamped lod, this should
// have been generated earlier and put in a local.
if class.is_mipmapped() {
write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
}
// Close the `textureSize` call
write!(self.out, ")")?;
// Subtract 1 from the `textureSize` call since the coordinates are zero based.
if vector_size == 1 {
write!(self.out, " - 1")?;
} else {
write!(self.out, " - ivec{vector_size}(1)")?;
}
// Close the `clamp` call
write!(self.out, ")")?;
// Add the clamped lod (if present) as the second argument to the
// image load function.
if level.is_some() {
write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
}
// If a sample argument is needed we need to clamp it between 0 and
// the number of samples the image has.
if let Some(sample_expr) = sample {
write!(self.out, ", clamp(")?;
self.write_expr(sample_expr, ctx)?;
// Set the min value to 0 and start the call to `textureSamples`
write!(self.out, ", 0, textureSamples(")?;
self.write_expr(image, ctx)?;
// Close the `textureSamples` call, subtract 1 from it since the sample
// argument is zero based, and close the `clamp` call
writeln!(self.out, ") - 1)")?;
}
} else if let Some(sample_or_level) = sample.or(level) {
// If no bounds checking is need just add the sample or level argument
// after the coordinates
write!(self.out, ", ")?;
self.write_expr(sample_or_level, ctx)?;
}
// Close the image load function.
write!(self.out, ")")?;
// If we were using the `ReadZeroSkipWrite` policy we need to end the first branch
// (which is taken if the condition is `true`) with a colon (`:`) and write the
// second branch which is just a 0 value.
if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
// Get the kind of the output value.
let kind = match class {
// Only sampled images can reach here since storage images
// don't need bounds checks and depth images aren't implemented
crate::ImageClass::Sampled { kind, .. } => kind,
_ => unreachable!(),
};
// End the first branch
write!(self.out, " : ")?;
// Write the 0 value
write!(
self.out,
"{}vec4(",
glsl_scalar(crate::Scalar { kind, width: 4 })?.prefix,
)?;
self.write_zero_init_scalar(kind)?;
// Close the zero value constructor
write!(self.out, ")")?;
// Close the parentheses surrounding our ternary
write!(self.out, ")")?;
}
Ok(())
}
fn write_named_expr(
&mut self,
handle: Handle<crate::Expression>,
name: String,
// The expression which is being named.
// Generally, this is the same as handle, except in WorkGroupUniformLoad
named: Handle<crate::Expression>,
ctx: &back::FunctionCtx,
) -> BackendResult {
match ctx.info[named].ty {
proc::TypeResolution::Handle(ty_handle) => match self.module.types[ty_handle].inner {
TypeInner::Struct { .. } => {
let ty_name = &self.names[&NameKey::Type(ty_handle)];
write!(self.out, "{ty_name}")?;
}
_ => {
self.write_type(ty_handle)?;
}
},
proc::TypeResolution::Value(ref inner) => {
self.write_value_type(inner)?;
}
}
let resolved = ctx.resolve_type(named, &self.module.types);
write!(self.out, " {name}")?;
if let TypeInner::Array { base, size, .. } = *resolved {
self.write_array_size(base, size)?;
}
write!(self.out, " = ")?;
self.write_expr(handle, ctx)?;
writeln!(self.out, ";")?;
self.named_expressions.insert(named, name);
Ok(())
}
/// Helper function that write string with default zero initialization for supported types
fn write_zero_init_value(&mut self, ty: Handle<crate::Type>) -> BackendResult {
let inner = &self.module.types[ty].inner;
match *inner {
TypeInner::Scalar(scalar) | TypeInner::Atomic(scalar) => {
self.write_zero_init_scalar(scalar.kind)?;
}
TypeInner::Vector { scalar, .. } => {
self.write_value_type(inner)?;
write!(self.out, "(")?;
self.write_zero_init_scalar(scalar.kind)?;
write!(self.out, ")")?;
}
TypeInner::Matrix { .. } => {
self.write_value_type(inner)?;
write!(self.out, "(")?;
self.write_zero_init_scalar(crate::ScalarKind::Float)?;
write!(self.out, ")")?;
}
TypeInner::Array { base, size, .. } => {
let count = match size
.to_indexable_length(self.module)
.expect("Bad array size")
{
proc::IndexableLength::Known(count) => count,
proc::IndexableLength::Pending => unreachable!(),
proc::IndexableLength::Dynamic => return Ok(()),
};
self.write_type(base)?;
self.write_array_size(base, size)?;
write!(self.out, "(")?;
for _ in 1..count {
self.write_zero_init_value(base)?;
write!(self.out, ", ")?;
}
// write last parameter without comma and space
self.write_zero_init_value(base)?;
write!(self.out, ")")?;
}
TypeInner::Struct { ref members, .. } => {
let name = &self.names[&NameKey::Type(ty)];
write!(self.out, "{name}(")?;
for (index, member) in members.iter().enumerate() {
if index != 0 {
write!(self.out, ", ")?;
}
self.write_zero_init_value(member.ty)?;
}
write!(self.out, ")")?;
}
_ => unreachable!(),
}
Ok(())
}
/// Helper function that write string with zero initialization for scalar
fn write_zero_init_scalar(&mut self, kind: crate::ScalarKind) -> BackendResult {
match kind {
crate::ScalarKind::Bool => write!(self.out, "false")?,
crate::ScalarKind::Uint => write!(self.out, "0u")?,
crate::ScalarKind::Float => write!(self.out, "0.0")?,
crate::ScalarKind::Sint => write!(self.out, "0")?,
crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => {
return Err(Error::Custom(
"Abstract types should not appear in IR presented to backends".to_string(),
))
}
}
Ok(())
}
/// Issue a memory barrier. Please note that to ensure visibility,
/// OpenGL always requires a call to the `barrier()` function after a `memoryBarrier*()`
fn write_barrier(&mut self, flags: crate::Barrier, level: back::Level) -> BackendResult {
if flags.contains(crate::Barrier::STORAGE) {
writeln!(self.out, "{level}memoryBarrierBuffer();")?;
}
if flags.contains(crate::Barrier::WORK_GROUP) {
writeln!(self.out, "{level}memoryBarrierShared();")?;
}
if flags.contains(crate::Barrier::SUB_GROUP) {
writeln!(self.out, "{level}subgroupMemoryBarrier();")?;
}
writeln!(self.out, "{level}barrier();")?;
Ok(())
}
/// Helper function that return the glsl storage access string of [`StorageAccess`](crate::StorageAccess)
///
/// glsl allows adding both `readonly` and `writeonly` but this means that
/// they can only be used to query information about the resource which isn't what
/// we want here so when storage access is both `LOAD` and `STORE` add no modifiers
fn write_storage_access(&mut self, storage_access: crate::StorageAccess) -> BackendResult {
if storage_access.contains(crate::StorageAccess::ATOMIC) {
return Ok(());
}
if !storage_access.contains(crate::StorageAccess::STORE) {
write!(self.out, "readonly ")?;
}
if !storage_access.contains(crate::StorageAccess::LOAD) {
write!(self.out, "writeonly ")?;
}
Ok(())
}
/// Helper method used to produce the reflection info that's returned to the user
fn collect_reflection_info(&mut self) -> Result<ReflectionInfo, Error> {
use std::collections::hash_map::Entry;
let info = self.info.get_entry_point(self.entry_point_idx as usize);
let mut texture_mapping = crate::FastHashMap::default();
let mut uniforms = crate::FastHashMap::default();
for sampling in info.sampling_set.iter() {
let tex_name = self.reflection_names_globals[&sampling.image].clone();
match texture_mapping.entry(tex_name) {
Entry::Vacant(v) => {
v.insert(TextureMapping {
texture: sampling.image,
sampler: Some(sampling.sampler),
});
}
Entry::Occupied(e) => {
if e.get().sampler != Some(sampling.sampler) {
log::error!("Conflicting samplers for {}", e.key());
return Err(Error::ImageMultipleSamplers);
}
}
}
}
let mut push_constant_info = None;
for (handle, var) in self.module.global_variables.iter() {
if info[handle].is_empty() {
continue;
}
match self.module.types[var.ty].inner {
TypeInner::Image { .. } => {
let tex_name = self.reflection_names_globals[&handle].clone();
match texture_mapping.entry(tex_name) {
Entry::Vacant(v) => {
v.insert(TextureMapping {
texture: handle,
sampler: None,
});
}
Entry::Occupied(_) => {
// already used with a sampler, do nothing
}
}
}
_ => match var.space {
crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => {
let name = self.reflection_names_globals[&handle].clone();
uniforms.insert(handle, name);
}
crate::AddressSpace::PushConstant => {
let name = self.reflection_names_globals[&handle].clone();
push_constant_info = Some((name, var.ty));
}
_ => (),
},
}
}
let mut push_constant_segments = Vec::new();
let mut push_constant_items = vec![];
if let Some((name, ty)) = push_constant_info {
// We don't have a layouter available to us, so we need to create one.
//
// This is potentially a bit wasteful, but the set of types in the program
// shouldn't be too large.
let mut layouter = proc::Layouter::default();
layouter.update(self.module.to_ctx()).unwrap();
// We start with the name of the binding itself.
push_constant_segments.push(name);
// We then recursively collect all the uniform fields of the push constant.
self.collect_push_constant_items(
ty,
&mut push_constant_segments,
&layouter,
&mut 0,
&mut push_constant_items,
);
}
Ok(ReflectionInfo {
texture_mapping,
uniforms,
varying: mem::take(&mut self.varying),
push_constant_items,
})
}
fn collect_push_constant_items(
&mut self,
ty: Handle<crate::Type>,
segments: &mut Vec<String>,
layouter: &proc::Layouter,
offset: &mut u32,
items: &mut Vec<PushConstantItem>,
) {
// At this point in the recursion, `segments` contains the path
// needed to access `ty` from the root.
let layout = &layouter[ty];
*offset = layout.alignment.round_up(*offset);
match self.module.types[ty].inner {
// All these types map directly to GL uniforms.
TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => {
// Build the full name, by combining all current segments.
let name: String = segments.iter().map(String::as_str).collect();
items.push(PushConstantItem {
access_path: name,
offset: *offset,
ty,
});
*offset += layout.size;
}
// Arrays are recursed into.
TypeInner::Array { base, size, .. } => {
let crate::ArraySize::Constant(count) = size else {
unreachable!("Cannot have dynamic arrays in push constants");
};
for i in 0..count.get() {
// Add the array accessor and recurse.
segments.push(format!("[{i}]"));
self.collect_push_constant_items(base, segments, layouter, offset, items);
segments.pop();
}
// Ensure the stride is kept by rounding up to the alignment.
*offset = layout.alignment.round_up(*offset)
}
TypeInner::Struct { ref members, .. } => {
for (index, member) in members.iter().enumerate() {
// Add struct accessor and recurse.
segments.push(format!(
".{}",
self.names[&NameKey::StructMember(ty, index as u32)]
));
self.collect_push_constant_items(member.ty, segments, layouter, offset, items);
segments.pop();
}
// Ensure ending padding is kept by rounding up to the alignment.
*offset = layout.alignment.round_up(*offset)
}
_ => unreachable!(),
}
}
}
/// Structure returned by [`glsl_scalar`]
///
/// It contains both a prefix used in other types and the full type name
struct ScalarString<'a> {
/// The prefix used to compose other types
prefix: &'a str,
/// The name of the scalar type
full: &'a str,
}
/// Helper function that returns scalar related strings
///
/// Check [`ScalarString`] for the information provided
///
/// # Errors
/// If a [`Float`](crate::ScalarKind::Float) with an width that isn't 4 or 8
const fn glsl_scalar(scalar: crate::Scalar) -> Result<ScalarString<'static>, Error> {
use crate::ScalarKind as Sk;
Ok(match scalar.kind {
Sk::Sint => ScalarString {
prefix: "i",
full: "int",
},
Sk::Uint => ScalarString {
prefix: "u",
full: "uint",
},
Sk::Float => match scalar.width {
4 => ScalarString {
prefix: "",
full: "float",
},
8 => ScalarString {
prefix: "d",
full: "double",
},
_ => return Err(Error::UnsupportedScalar(scalar)),
},
Sk::Bool => ScalarString {
prefix: "b",
full: "bool",
},
Sk::AbstractInt | Sk::AbstractFloat => {
return Err(Error::UnsupportedScalar(scalar));
}
})
}
/// Helper function that returns the glsl variable name for a builtin
const fn glsl_built_in(built_in: crate::BuiltIn, options: VaryingOptions) -> &'static str {
use crate::BuiltIn as Bi;
match built_in {
Bi::Position { .. } => {
if options.output {
"gl_Position"
} else {
"gl_FragCoord"
}
}
Bi::ViewIndex if options.targeting_webgl => "int(gl_ViewID_OVR)",
Bi::ViewIndex => "gl_ViewIndex",
// vertex
Bi::BaseInstance => "uint(gl_BaseInstance)",
Bi::BaseVertex => "uint(gl_BaseVertex)",
Bi::ClipDistance => "gl_ClipDistance",
Bi::CullDistance => "gl_CullDistance",
Bi::InstanceIndex => {
if options.draw_parameters {
"(uint(gl_InstanceID) + uint(gl_BaseInstanceARB))"
} else {
// Must match FIRST_INSTANCE_BINDING
"(uint(gl_InstanceID) + naga_vs_first_instance)"
}
}
Bi::PointSize => "gl_PointSize",
Bi::VertexIndex => "uint(gl_VertexID)",
Bi::DrawID => "gl_DrawID",
// fragment
Bi::FragDepth => "gl_FragDepth",
Bi::PointCoord => "gl_PointCoord",
Bi::FrontFacing => "gl_FrontFacing",
Bi::PrimitiveIndex => "uint(gl_PrimitiveID)",
Bi::SampleIndex => "gl_SampleID",
Bi::SampleMask => {
if options.output {
"gl_SampleMask"
} else {
"gl_SampleMaskIn"
}
}
// compute
Bi::GlobalInvocationId => "gl_GlobalInvocationID",
Bi::LocalInvocationId => "gl_LocalInvocationID",
Bi::LocalInvocationIndex => "gl_LocalInvocationIndex",
Bi::WorkGroupId => "gl_WorkGroupID",
Bi::WorkGroupSize => "gl_WorkGroupSize",
Bi::NumWorkGroups => "gl_NumWorkGroups",
// subgroup
Bi::NumSubgroups => "gl_NumSubgroups",
Bi::SubgroupId => "gl_SubgroupID",
Bi::SubgroupSize => "gl_SubgroupSize",
Bi::SubgroupInvocationId => "gl_SubgroupInvocationID",
}
}
/// Helper function that returns the string corresponding to the address space
const fn glsl_storage_qualifier(space: crate::AddressSpace) -> Option<&'static str> {
use crate::AddressSpace as As;
match space {
As::Function => None,
As::Private => None,
As::Storage { .. } => Some("buffer"),
As::Uniform => Some("uniform"),
As::Handle => Some("uniform"),
As::WorkGroup => Some("shared"),
As::PushConstant => Some("uniform"),
}
}
/// Helper function that returns the string corresponding to the glsl interpolation qualifier
const fn glsl_interpolation(interpolation: crate::Interpolation) -> &'static str {
use crate::Interpolation as I;
match interpolation {
I::Perspective => "smooth",
I::Linear => "noperspective",
I::Flat => "flat",
}
}
/// Return the GLSL auxiliary qualifier for the given sampling value.
const fn glsl_sampling(sampling: crate::Sampling) -> BackendResult<Option<&'static str>> {
use crate::Sampling as S;
Ok(match sampling {
S::First => return Err(Error::FirstSamplingNotSupported),
S::Center | S::Either => None,
S::Centroid => Some("centroid"),
S::Sample => Some("sample"),
})
}
/// Helper function that returns the glsl dimension string of [`ImageDimension`](crate::ImageDimension)
const fn glsl_dimension(dim: crate::ImageDimension) -> &'static str {
use crate::ImageDimension as IDim;
match dim {
IDim::D1 => "1D",
IDim::D2 => "2D",
IDim::D3 => "3D",
IDim::Cube => "Cube",
}
}
/// Helper function that returns the glsl storage format string of [`StorageFormat`](crate::StorageFormat)
fn glsl_storage_format(format: crate::StorageFormat) -> Result<&'static str, Error> {
use crate::StorageFormat as Sf;
Ok(match format {
Sf::R8Unorm => "r8",
Sf::R8Snorm => "r8_snorm",
Sf::R8Uint => "r8ui",
Sf::R8Sint => "r8i",
Sf::R16Uint => "r16ui",
Sf::R16Sint => "r16i",
Sf::R16Float => "r16f",
Sf::Rg8Unorm => "rg8",
Sf::Rg8Snorm => "rg8_snorm",
Sf::Rg8Uint => "rg8ui",
Sf::Rg8Sint => "rg8i",
Sf::R32Uint => "r32ui",
Sf::R32Sint => "r32i",
Sf::R32Float => "r32f",
Sf::Rg16Uint => "rg16ui",
Sf::Rg16Sint => "rg16i",
Sf::Rg16Float => "rg16f",
Sf::Rgba8Unorm => "rgba8",
Sf::Rgba8Snorm => "rgba8_snorm",
Sf::Rgba8Uint => "rgba8ui",
Sf::Rgba8Sint => "rgba8i",
Sf::Rgb10a2Uint => "rgb10_a2ui",
Sf::Rgb10a2Unorm => "rgb10_a2",
Sf::Rg11b10Ufloat => "r11f_g11f_b10f",
Sf::R64Uint => "r64ui",
Sf::Rg32Uint => "rg32ui",
Sf::Rg32Sint => "rg32i",
Sf::Rg32Float => "rg32f",
Sf::Rgba16Uint => "rgba16ui",
Sf::Rgba16Sint => "rgba16i",
Sf::Rgba16Float => "rgba16f",
Sf::Rgba32Uint => "rgba32ui",
Sf::Rgba32Sint => "rgba32i",
Sf::Rgba32Float => "rgba32f",
Sf::R16Unorm => "r16",
Sf::R16Snorm => "r16_snorm",
Sf::Rg16Unorm => "rg16",
Sf::Rg16Snorm => "rg16_snorm",
Sf::Rgba16Unorm => "rgba16",
Sf::Rgba16Snorm => "rgba16_snorm",
Sf::Bgra8Unorm => {
return Err(Error::Custom(
"Support format BGRA8 is not implemented".into(),
))
}
})
}
fn is_value_init_supported(module: &crate::Module, ty: Handle<crate::Type>) -> bool {
match module.types[ty].inner {
TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => true,
TypeInner::Array { base, size, .. } => {
size != crate::ArraySize::Dynamic && is_value_init_supported(module, base)
}
TypeInner::Struct { ref members, .. } => members
.iter()
.all(|member| is_value_init_supported(module, member.ty)),
_ => false,
}
}