naga/back/glsl/mod.rs
1/*!
2Backend for [GLSL][glsl] (OpenGL Shading Language).
3
4The main structure is [`Writer`], it maintains internal state that is used
5to output a [`Module`](crate::Module) into glsl
6
7# Supported versions
8### Core
9- 330
10- 400
11- 410
12- 420
13- 430
14- 450
15
16### ES
17- 300
18- 310
19
20[glsl]: https://www.khronos.org/registry/OpenGL/index_gl.php
21*/
22
23// GLSL is mostly a superset of C but it also removes some parts of it this is a list of relevant
24// aspects for this backend.
25//
26// The most notable change is the introduction of the version preprocessor directive that must
27// always be the first line of a glsl file and is written as
28// `#version number profile`
29// `number` is the version itself (i.e. 300) and `profile` is the
30// shader profile we only support "core" and "es", the former is used in desktop applications and
31// the later is used in embedded contexts, mobile devices and browsers. Each one as it's own
32// versions (at the time of writing this the latest version for "core" is 460 and for "es" is 320)
33//
34// Other important preprocessor addition is the extension directive which is written as
35// `#extension name: behaviour`
36// Extensions provide increased features in a plugin fashion but they aren't required to be
37// supported hence why they are called extensions, that's why `behaviour` is used it specifies
38// whether the extension is strictly required or if it should only be enabled if needed. In our case
39// when we use extensions we set behaviour to `require` always.
40//
41// The only thing that glsl removes that makes a difference are pointers.
42//
43// Additions that are relevant for the backend are the discard keyword, the introduction of
44// vector, matrices, samplers, image types and functions that provide common shader operations
45
46pub use features::Features;
47
48use alloc::{
49 borrow::ToOwned,
50 format,
51 string::{String, ToString},
52 vec,
53 vec::Vec,
54};
55use core::{
56 cmp::Ordering,
57 fmt::{self, Error as FmtError, Write},
58 mem,
59};
60
61use hashbrown::hash_map;
62use thiserror::Error;
63
64use crate::{
65 back::{self, Baked},
66 common,
67 proc::{self, NameKey},
68 valid, Handle, ShaderStage, TypeInner,
69};
70use features::FeaturesManager;
71
72/// Contains the features related code and the features querying method
73mod features;
74/// Contains a constant with a slice of all the reserved keywords RESERVED_KEYWORDS
75mod keywords;
76
77/// List of supported `core` GLSL versions.
78pub const SUPPORTED_CORE_VERSIONS: &[u16] = &[140, 150, 330, 400, 410, 420, 430, 440, 450, 460];
79/// List of supported `es` GLSL versions.
80pub const SUPPORTED_ES_VERSIONS: &[u16] = &[300, 310, 320];
81
82/// The suffix of the variable that will hold the calculated clamped level
83/// of detail for bounds checking in `ImageLoad`
84const CLAMPED_LOD_SUFFIX: &str = "_clamped_lod";
85
86pub(crate) const MODF_FUNCTION: &str = "naga_modf";
87pub(crate) const FREXP_FUNCTION: &str = "naga_frexp";
88
89// Must match code in glsl_built_in
90pub const FIRST_INSTANCE_BINDING: &str = "naga_vs_first_instance";
91
92#[cfg(any(feature = "serialize", feature = "deserialize"))]
93#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
94#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
95struct BindingMapSerialization {
96 resource_binding: crate::ResourceBinding,
97 bind_target: u8,
98}
99
100#[cfg(feature = "deserialize")]
101fn deserialize_binding_map<'de, D>(deserializer: D) -> Result<BindingMap, D::Error>
102where
103 D: serde::Deserializer<'de>,
104{
105 use serde::Deserialize;
106
107 let vec = Vec::<BindingMapSerialization>::deserialize(deserializer)?;
108 let mut map = BindingMap::default();
109 for item in vec {
110 map.insert(item.resource_binding, item.bind_target);
111 }
112 Ok(map)
113}
114
115/// Mapping between resources and bindings.
116pub type BindingMap = alloc::collections::BTreeMap<crate::ResourceBinding, u8>;
117
118impl crate::AtomicFunction {
119 const fn to_glsl(self) -> &'static str {
120 match self {
121 Self::Add | Self::Subtract => "Add",
122 Self::And => "And",
123 Self::InclusiveOr => "Or",
124 Self::ExclusiveOr => "Xor",
125 Self::Min => "Min",
126 Self::Max => "Max",
127 Self::Exchange { compare: None } => "Exchange",
128 Self::Exchange { compare: Some(_) } => "", //TODO
129 }
130 }
131}
132
133impl crate::AddressSpace {
134 /// Whether a variable with this address space can be initialized
135 const fn initializable(&self) -> bool {
136 match *self {
137 crate::AddressSpace::Function | crate::AddressSpace::Private => true,
138 crate::AddressSpace::WorkGroup
139 | crate::AddressSpace::Uniform
140 | crate::AddressSpace::Storage { .. }
141 | crate::AddressSpace::Handle
142 | crate::AddressSpace::PushConstant => false,
143 }
144 }
145}
146
147/// A GLSL version.
148#[derive(Debug, Copy, Clone, PartialEq)]
149#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
150#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
151pub enum Version {
152 /// `core` GLSL.
153 Desktop(u16),
154 /// `es` GLSL.
155 Embedded { version: u16, is_webgl: bool },
156}
157
158impl Version {
159 /// Create a new gles version
160 pub const fn new_gles(version: u16) -> Self {
161 Self::Embedded {
162 version,
163 is_webgl: false,
164 }
165 }
166
167 /// Returns true if self is `Version::Embedded` (i.e. is a es version)
168 const fn is_es(&self) -> bool {
169 match *self {
170 Version::Desktop(_) => false,
171 Version::Embedded { .. } => true,
172 }
173 }
174
175 /// Returns true if targeting WebGL
176 const fn is_webgl(&self) -> bool {
177 match *self {
178 Version::Desktop(_) => false,
179 Version::Embedded { is_webgl, .. } => is_webgl,
180 }
181 }
182
183 /// Checks the list of currently supported versions and returns true if it contains the
184 /// specified version
185 ///
186 /// # Notes
187 /// As an invalid version number will never be added to the supported version list
188 /// so this also checks for version validity
189 fn is_supported(&self) -> bool {
190 match *self {
191 Version::Desktop(v) => SUPPORTED_CORE_VERSIONS.contains(&v),
192 Version::Embedded { version: v, .. } => SUPPORTED_ES_VERSIONS.contains(&v),
193 }
194 }
195
196 fn supports_io_locations(&self) -> bool {
197 *self >= Version::Desktop(330) || *self >= Version::new_gles(300)
198 }
199
200 /// Checks if the version supports all of the explicit layouts:
201 /// - `location=` qualifiers for bindings
202 /// - `binding=` qualifiers for resources
203 ///
204 /// Note: `location=` for vertex inputs and fragment outputs is supported
205 /// unconditionally for GLES 300.
206 fn supports_explicit_locations(&self) -> bool {
207 *self >= Version::Desktop(420) || *self >= Version::new_gles(310)
208 }
209
210 fn supports_early_depth_test(&self) -> bool {
211 *self >= Version::Desktop(130) || *self >= Version::new_gles(310)
212 }
213
214 fn supports_std140_layout(&self) -> bool {
215 *self >= Version::Desktop(140) || *self >= Version::new_gles(300)
216 }
217
218 fn supports_std430_layout(&self) -> bool {
219 *self >= Version::Desktop(430) || *self >= Version::new_gles(310)
220 }
221
222 fn supports_fma_function(&self) -> bool {
223 *self >= Version::Desktop(400) || *self >= Version::new_gles(320)
224 }
225
226 fn supports_integer_functions(&self) -> bool {
227 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
228 }
229
230 fn supports_frexp_function(&self) -> bool {
231 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
232 }
233
234 fn supports_derivative_control(&self) -> bool {
235 *self >= Version::Desktop(450)
236 }
237
238 // For supports_pack_unpack_4x8, supports_pack_unpack_snorm_2x16, supports_pack_unpack_unorm_2x16
239 // see:
240 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/unpackUnorm.xhtml
241 // https://registry.khronos.org/OpenGL-Refpages/es3/html/unpackUnorm.xhtml
242 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/packUnorm.xhtml
243 // https://registry.khronos.org/OpenGL-Refpages/es3/html/packUnorm.xhtml
244 fn supports_pack_unpack_4x8(&self) -> bool {
245 *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
246 }
247 fn supports_pack_unpack_snorm_2x16(&self) -> bool {
248 *self >= Version::Desktop(420) || *self >= Version::new_gles(300)
249 }
250 fn supports_pack_unpack_unorm_2x16(&self) -> bool {
251 *self >= Version::Desktop(400) || *self >= Version::new_gles(300)
252 }
253
254 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/unpackHalf2x16.xhtml
255 // https://registry.khronos.org/OpenGL-Refpages/gl4/html/packHalf2x16.xhtml
256 // https://registry.khronos.org/OpenGL-Refpages/es3/html/unpackHalf2x16.xhtml
257 // https://registry.khronos.org/OpenGL-Refpages/es3/html/packHalf2x16.xhtml
258 fn supports_pack_unpack_half_2x16(&self) -> bool {
259 *self >= Version::Desktop(420) || *self >= Version::new_gles(300)
260 }
261}
262
263impl PartialOrd for Version {
264 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
265 match (*self, *other) {
266 (Version::Desktop(x), Version::Desktop(y)) => Some(x.cmp(&y)),
267 (Version::Embedded { version: x, .. }, Version::Embedded { version: y, .. }) => {
268 Some(x.cmp(&y))
269 }
270 _ => None,
271 }
272 }
273}
274
275impl fmt::Display for Version {
276 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
277 match *self {
278 Version::Desktop(v) => write!(f, "{v} core"),
279 Version::Embedded { version: v, .. } => write!(f, "{v} es"),
280 }
281 }
282}
283
284bitflags::bitflags! {
285 /// Configuration flags for the [`Writer`].
286 #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
287 #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
288 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
289 pub struct WriterFlags: u32 {
290 /// Flip output Y and extend Z from (0, 1) to (-1, 1).
291 const ADJUST_COORDINATE_SPACE = 0x1;
292 /// Supports GL_EXT_texture_shadow_lod on the host, which provides
293 /// additional functions on shadows and arrays of shadows.
294 const TEXTURE_SHADOW_LOD = 0x2;
295 /// Supports ARB_shader_draw_parameters on the host, which provides
296 /// support for `gl_BaseInstanceARB`, `gl_BaseVertexARB`, `gl_DrawIDARB`, and `gl_DrawID`.
297 const DRAW_PARAMETERS = 0x4;
298 /// Include unused global variables, constants and functions. By default the output will exclude
299 /// global variables that are not used in the specified entrypoint (including indirect use),
300 /// all constant declarations, and functions that use excluded global variables.
301 const INCLUDE_UNUSED_ITEMS = 0x10;
302 /// Emit `PointSize` output builtin to vertex shaders, which is
303 /// required for drawing with `PointList` topology.
304 ///
305 /// https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#built-in-language-variables
306 /// The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is measured in pixels.
307 /// If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.
308 const FORCE_POINT_SIZE = 0x20;
309 }
310}
311
312/// Configuration used in the [`Writer`].
313#[derive(Debug, Clone)]
314#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
315#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
316#[cfg_attr(feature = "deserialize", serde(default))]
317pub struct Options {
318 /// The GLSL version to be used.
319 pub version: Version,
320 /// Configuration flags for the [`Writer`].
321 pub writer_flags: WriterFlags,
322 /// Map of resources association to binding locations.
323 #[cfg_attr(
324 feature = "deserialize",
325 serde(deserialize_with = "deserialize_binding_map")
326 )]
327 pub binding_map: BindingMap,
328 /// Should workgroup variables be zero initialized (by polyfilling)?
329 pub zero_initialize_workgroup_memory: bool,
330}
331
332impl Default for Options {
333 fn default() -> Self {
334 Options {
335 version: Version::new_gles(310),
336 writer_flags: WriterFlags::ADJUST_COORDINATE_SPACE,
337 binding_map: BindingMap::default(),
338 zero_initialize_workgroup_memory: true,
339 }
340 }
341}
342
343/// A subset of options meant to be changed per pipeline.
344#[derive(Debug, Clone)]
345#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
346#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
347pub struct PipelineOptions {
348 /// The stage of the entry point.
349 pub shader_stage: ShaderStage,
350 /// The name of the entry point.
351 ///
352 /// If no entry point that matches is found while creating a [`Writer`], an
353 /// error will be thrown.
354 pub entry_point: String,
355 /// How many views to render to, if doing multiview rendering.
356 pub multiview: Option<core::num::NonZeroU32>,
357}
358
359#[derive(Debug)]
360pub struct VaryingLocation {
361 /// The location of the global.
362 /// This corresponds to `layout(location = ..)` in GLSL.
363 pub location: u32,
364 /// The index which can be used for dual source blending.
365 /// This corresponds to `layout(index = ..)` in GLSL.
366 pub index: u32,
367}
368
369/// Reflection info for texture mappings and uniforms.
370#[derive(Debug)]
371pub struct ReflectionInfo {
372 /// Mapping between texture names and variables/samplers.
373 pub texture_mapping: crate::FastHashMap<String, TextureMapping>,
374 /// Mapping between uniform variables and names.
375 pub uniforms: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
376 /// Mapping between names and attribute locations.
377 pub varying: crate::FastHashMap<String, VaryingLocation>,
378 /// List of push constant items in the shader.
379 pub push_constant_items: Vec<PushConstantItem>,
380 /// Number of user-defined clip planes. Only applicable to vertex shaders.
381 pub clip_distance_count: u32,
382}
383
384/// Mapping between a texture and its sampler, if it exists.
385///
386/// GLSL pre-Vulkan has no concept of separate textures and samplers. Instead, everything is a
387/// `gsamplerN` where `g` is the scalar type and `N` is the dimension. But naga uses separate textures
388/// and samplers in the IR, so the backend produces a [`FastHashMap`](crate::FastHashMap) with the texture name
389/// as a key and a [`TextureMapping`] as a value. This way, the user knows where to bind.
390///
391/// [`Storage`](crate::ImageClass::Storage) images produce `gimageN` and don't have an associated sampler,
392/// so the [`sampler`](Self::sampler) field will be [`None`].
393#[derive(Debug, Clone)]
394pub struct TextureMapping {
395 /// Handle to the image global variable.
396 pub texture: Handle<crate::GlobalVariable>,
397 /// Handle to the associated sampler global variable, if it exists.
398 pub sampler: Option<Handle<crate::GlobalVariable>>,
399}
400
401/// All information to bind a single uniform value to the shader.
402///
403/// Push constants are emulated using traditional uniforms in OpenGL.
404///
405/// These are composed of a set of primitives (scalar, vector, matrix) that
406/// are given names. Because they are not backed by the concept of a buffer,
407/// we must do the work of calculating the offset of each primitive in the
408/// push constant block.
409#[derive(Debug, Clone)]
410pub struct PushConstantItem {
411 /// GL uniform name for the item. This name is the same as if you were
412 /// to access it directly from a GLSL shader.
413 ///
414 /// The with the following example, the following names will be generated,
415 /// one name per GLSL uniform.
416 ///
417 /// ```glsl
418 /// struct InnerStruct {
419 /// value: f32,
420 /// }
421 ///
422 /// struct PushConstant {
423 /// InnerStruct inner;
424 /// vec4 array[2];
425 /// }
426 ///
427 /// uniform PushConstants _push_constant_binding_cs;
428 /// ```
429 ///
430 /// ```text
431 /// - _push_constant_binding_cs.inner.value
432 /// - _push_constant_binding_cs.array[0]
433 /// - _push_constant_binding_cs.array[1]
434 /// ```
435 ///
436 pub access_path: String,
437 /// Type of the uniform. This will only ever be a scalar, vector, or matrix.
438 pub ty: Handle<crate::Type>,
439 /// The offset in the push constant memory block this uniform maps to.
440 ///
441 /// The size of the uniform can be derived from the type.
442 pub offset: u32,
443}
444
445/// Helper structure that generates a number
446#[derive(Default)]
447struct IdGenerator(u32);
448
449impl IdGenerator {
450 /// Generates a number that's guaranteed to be unique for this `IdGenerator`
451 fn generate(&mut self) -> u32 {
452 // It's just an increasing number but it does the job
453 let ret = self.0;
454 self.0 += 1;
455 ret
456 }
457}
458
459/// Assorted options needed for generating varyings.
460#[derive(Clone, Copy)]
461struct VaryingOptions {
462 output: bool,
463 targeting_webgl: bool,
464 draw_parameters: bool,
465}
466
467impl VaryingOptions {
468 const fn from_writer_options(options: &Options, output: bool) -> Self {
469 Self {
470 output,
471 targeting_webgl: options.version.is_webgl(),
472 draw_parameters: options.writer_flags.contains(WriterFlags::DRAW_PARAMETERS),
473 }
474 }
475}
476
477/// Helper wrapper used to get a name for a varying
478///
479/// Varying have different naming schemes depending on their binding:
480/// - Varyings with builtin bindings get their name from [`glsl_built_in`].
481/// - Varyings with location bindings are named `_S_location_X` where `S` is a
482/// prefix identifying which pipeline stage the varying connects, and `X` is
483/// the location.
484struct VaryingName<'a> {
485 binding: &'a crate::Binding,
486 stage: ShaderStage,
487 options: VaryingOptions,
488}
489impl fmt::Display for VaryingName<'_> {
490 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
491 match *self.binding {
492 crate::Binding::Location {
493 blend_src: Some(1), ..
494 } => {
495 write!(f, "_fs2p_location1",)
496 }
497 crate::Binding::Location { location, .. } => {
498 let prefix = match (self.stage, self.options.output) {
499 (ShaderStage::Compute, _) => unreachable!(),
500 // pipeline to vertex
501 (ShaderStage::Vertex, false) => "p2vs",
502 // vertex to fragment
503 (ShaderStage::Vertex, true) | (ShaderStage::Fragment, false) => "vs2fs",
504 // fragment to pipeline
505 (ShaderStage::Fragment, true) => "fs2p",
506 (ShaderStage::Task | ShaderStage::Mesh, _) => unreachable!(),
507 };
508 write!(f, "_{prefix}_location{location}",)
509 }
510 crate::Binding::BuiltIn(built_in) => {
511 write!(f, "{}", glsl_built_in(built_in, self.options))
512 }
513 }
514 }
515}
516
517impl ShaderStage {
518 const fn to_str(self) -> &'static str {
519 match self {
520 ShaderStage::Compute => "cs",
521 ShaderStage::Fragment => "fs",
522 ShaderStage::Vertex => "vs",
523 ShaderStage::Task | ShaderStage::Mesh => unreachable!(),
524 }
525 }
526}
527
528/// Shorthand result used internally by the backend
529type BackendResult<T = ()> = Result<T, Error>;
530
531/// A GLSL compilation error.
532#[derive(Debug, Error)]
533pub enum Error {
534 /// A error occurred while writing to the output.
535 #[error("Format error")]
536 FmtError(#[from] FmtError),
537 /// The specified [`Version`] doesn't have all required [`Features`].
538 ///
539 /// Contains the missing [`Features`].
540 #[error("The selected version doesn't support {0:?}")]
541 MissingFeatures(Features),
542 /// [`AddressSpace::PushConstant`](crate::AddressSpace::PushConstant) was used more than
543 /// once in the entry point, which isn't supported.
544 #[error("Multiple push constants aren't supported")]
545 MultiplePushConstants,
546 /// The specified [`Version`] isn't supported.
547 #[error("The specified version isn't supported")]
548 VersionNotSupported,
549 /// The entry point couldn't be found.
550 #[error("The requested entry point couldn't be found")]
551 EntryPointNotFound,
552 /// A call was made to an unsupported external.
553 #[error("A call was made to an unsupported external: {0}")]
554 UnsupportedExternal(String),
555 /// A scalar with an unsupported width was requested.
556 #[error("A scalar with an unsupported width was requested: {0:?}")]
557 UnsupportedScalar(crate::Scalar),
558 /// A image was used with multiple samplers, which isn't supported.
559 #[error("A image was used with multiple samplers")]
560 ImageMultipleSamplers,
561 #[error("{0}")]
562 Custom(String),
563 #[error("overrides should not be present at this stage")]
564 Override,
565 /// [`crate::Sampling::First`] is unsupported.
566 #[error("`{:?}` sampling is unsupported", crate::Sampling::First)]
567 FirstSamplingNotSupported,
568 #[error(transparent)]
569 ResolveArraySizeError(#[from] proc::ResolveArraySizeError),
570}
571
572/// Binary operation with a different logic on the GLSL side.
573enum BinaryOperation {
574 /// Vector comparison should use the function like `greaterThan()`, etc.
575 VectorCompare,
576 /// Vector component wise operation; used to polyfill unsupported ops like `|` and `&` for `bvecN`'s
577 VectorComponentWise,
578 /// GLSL `%` is SPIR-V `OpUMod/OpSMod` and `mod()` is `OpFMod`, but [`BinaryOperator::Modulo`](crate::BinaryOperator::Modulo) is `OpFRem`.
579 Modulo,
580 /// Any plain operation. No additional logic required.
581 Other,
582}
583
584/// Writer responsible for all code generation.
585pub struct Writer<'a, W> {
586 // Inputs
587 /// The module being written.
588 module: &'a crate::Module,
589 /// The module analysis.
590 info: &'a valid::ModuleInfo,
591 /// The output writer.
592 out: W,
593 /// User defined configuration to be used.
594 options: &'a Options,
595 /// The bound checking policies to be used
596 policies: proc::BoundsCheckPolicies,
597
598 // Internal State
599 /// Features manager used to store all the needed features and write them.
600 features: FeaturesManager,
601 namer: proc::Namer,
602 /// A map with all the names needed for writing the module
603 /// (generated by a [`Namer`](crate::proc::Namer)).
604 names: crate::FastHashMap<NameKey, String>,
605 /// A map with the names of global variables needed for reflections.
606 reflection_names_globals: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
607 /// The selected entry point.
608 entry_point: &'a crate::EntryPoint,
609 /// The index of the selected entry point.
610 entry_point_idx: proc::EntryPointIndex,
611 /// A generator for unique block numbers.
612 block_id: IdGenerator,
613 /// Set of expressions that have associated temporary variables.
614 named_expressions: crate::NamedExpressions,
615 /// Set of expressions that need to be baked to avoid unnecessary repetition in output
616 need_bake_expressions: back::NeedBakeExpressions,
617 /// Information about nesting of loops and switches.
618 ///
619 /// Used for forwarding continue statements in switches that have been
620 /// transformed to `do {} while(false);` loops.
621 continue_ctx: back::continue_forward::ContinueCtx,
622 /// How many views to render to, if doing multiview rendering.
623 multiview: Option<core::num::NonZeroU32>,
624 /// Mapping of varying variables to their location. Needed for reflections.
625 varying: crate::FastHashMap<String, VaryingLocation>,
626 /// Number of user-defined clip planes. Only non-zero for vertex shaders.
627 clip_distance_count: u32,
628}
629
630impl<'a, W: Write> Writer<'a, W> {
631 /// Creates a new [`Writer`] instance.
632 ///
633 /// # Errors
634 /// - If the version specified is invalid or supported.
635 /// - If the entry point couldn't be found in the module.
636 /// - If the version specified doesn't support some used features.
637 pub fn new(
638 out: W,
639 module: &'a crate::Module,
640 info: &'a valid::ModuleInfo,
641 options: &'a Options,
642 pipeline_options: &'a PipelineOptions,
643 policies: proc::BoundsCheckPolicies,
644 ) -> Result<Self, Error> {
645 // Check if the requested version is supported
646 if !options.version.is_supported() {
647 log::error!("Version {}", options.version);
648 return Err(Error::VersionNotSupported);
649 }
650
651 // Try to find the entry point and corresponding index
652 let ep_idx = module
653 .entry_points
654 .iter()
655 .position(|ep| {
656 pipeline_options.shader_stage == ep.stage && pipeline_options.entry_point == ep.name
657 })
658 .ok_or(Error::EntryPointNotFound)?;
659
660 // Generate a map with names required to write the module
661 let mut names = crate::FastHashMap::default();
662 let mut namer = proc::Namer::default();
663 namer.reset(
664 module,
665 &keywords::RESERVED_KEYWORD_SET,
666 &[],
667 &[
668 "gl_", // all GL built-in variables
669 "_group", // all normal bindings
670 "_push_constant_binding_", // all push constant bindings
671 ],
672 &mut names,
673 );
674
675 // Build the instance
676 let mut this = Self {
677 module,
678 info,
679 out,
680 options,
681 policies,
682
683 namer,
684 features: FeaturesManager::new(),
685 names,
686 reflection_names_globals: crate::FastHashMap::default(),
687 entry_point: &module.entry_points[ep_idx],
688 entry_point_idx: ep_idx as u16,
689 multiview: pipeline_options.multiview,
690 block_id: IdGenerator::default(),
691 named_expressions: Default::default(),
692 need_bake_expressions: Default::default(),
693 continue_ctx: back::continue_forward::ContinueCtx::default(),
694 varying: Default::default(),
695 clip_distance_count: 0,
696 };
697
698 // Find all features required to print this module
699 this.collect_required_features()?;
700
701 Ok(this)
702 }
703
704 /// Writes the [`Module`](crate::Module) as glsl to the output
705 ///
706 /// # Notes
707 /// If an error occurs while writing, the output might have been written partially
708 ///
709 /// # Panics
710 /// Might panic if the module is invalid
711 pub fn write(&mut self) -> Result<ReflectionInfo, Error> {
712 // We use `writeln!(self.out)` throughout the write to add newlines
713 // to make the output more readable
714
715 let es = self.options.version.is_es();
716
717 // Write the version (It must be the first thing or it isn't a valid glsl output)
718 writeln!(self.out, "#version {}", self.options.version)?;
719 // Write all the needed extensions
720 //
721 // This used to be the last thing being written as it allowed to search for features while
722 // writing the module saving some loops but some older versions (420 or less) required the
723 // extensions to appear before being used, even though extensions are part of the
724 // preprocessor not the processor ¯\_(ツ)_/¯
725 self.features.write(self.options, &mut self.out)?;
726
727 // glsl es requires a precision to be specified for floats and ints
728 // TODO: Should this be user configurable?
729 if es {
730 writeln!(self.out)?;
731 writeln!(self.out, "precision highp float;")?;
732 writeln!(self.out, "precision highp int;")?;
733 writeln!(self.out)?;
734 }
735
736 if self.entry_point.stage == ShaderStage::Compute {
737 let workgroup_size = self.entry_point.workgroup_size;
738 writeln!(
739 self.out,
740 "layout(local_size_x = {}, local_size_y = {}, local_size_z = {}) in;",
741 workgroup_size[0], workgroup_size[1], workgroup_size[2]
742 )?;
743 writeln!(self.out)?;
744 }
745
746 if self.entry_point.stage == ShaderStage::Vertex
747 && !self
748 .options
749 .writer_flags
750 .contains(WriterFlags::DRAW_PARAMETERS)
751 && self.features.contains(Features::INSTANCE_INDEX)
752 {
753 writeln!(self.out, "uniform uint {FIRST_INSTANCE_BINDING};")?;
754 writeln!(self.out)?;
755 }
756
757 // Enable early depth tests if needed
758 if let Some(early_depth_test) = self.entry_point.early_depth_test {
759 // If early depth test is supported for this version of GLSL
760 if self.options.version.supports_early_depth_test() {
761 match early_depth_test {
762 crate::EarlyDepthTest::Force => {
763 writeln!(self.out, "layout(early_fragment_tests) in;")?;
764 }
765 crate::EarlyDepthTest::Allow { conservative, .. } => {
766 use crate::ConservativeDepth as Cd;
767 let depth = match conservative {
768 Cd::GreaterEqual => "greater",
769 Cd::LessEqual => "less",
770 Cd::Unchanged => "unchanged",
771 };
772 writeln!(self.out, "layout (depth_{depth}) out float gl_FragDepth;")?;
773 }
774 }
775 } else {
776 log::warn!(
777 "Early depth testing is not supported for this version of GLSL: {}",
778 self.options.version
779 );
780 }
781 }
782
783 if self.entry_point.stage == ShaderStage::Vertex && self.options.version.is_webgl() {
784 if let Some(multiview) = self.multiview.as_ref() {
785 writeln!(self.out, "layout(num_views = {multiview}) in;")?;
786 writeln!(self.out)?;
787 }
788 }
789
790 // Write struct types.
791 //
792 // This are always ordered because the IR is structured in a way that
793 // you can't make a struct without adding all of its members first.
794 for (handle, ty) in self.module.types.iter() {
795 if let TypeInner::Struct { ref members, .. } = ty.inner {
796 let struct_name = &self.names[&NameKey::Type(handle)];
797
798 // Structures ending with runtime-sized arrays can only be
799 // rendered as shader storage blocks in GLSL, not stand-alone
800 // struct types.
801 if !self.module.types[members.last().unwrap().ty]
802 .inner
803 .is_dynamically_sized(&self.module.types)
804 {
805 write!(self.out, "struct {struct_name} ")?;
806 self.write_struct_body(handle, members)?;
807 writeln!(self.out, ";")?;
808 }
809 }
810 }
811
812 // Write functions for special types.
813 for (type_key, struct_ty) in self.module.special_types.predeclared_types.iter() {
814 match type_key {
815 &crate::PredeclaredType::ModfResult { size, scalar }
816 | &crate::PredeclaredType::FrexpResult { size, scalar } => {
817 let struct_name = &self.names[&NameKey::Type(*struct_ty)];
818 let arg_type_name_owner;
819 let arg_type_name = if let Some(size) = size {
820 arg_type_name_owner = format!(
821 "{}vec{}",
822 if scalar.width == 8 { "d" } else { "" },
823 size as u8
824 );
825 &arg_type_name_owner
826 } else if scalar.width == 8 {
827 "double"
828 } else {
829 "float"
830 };
831
832 let other_type_name_owner;
833 let (defined_func_name, called_func_name, other_type_name) =
834 if matches!(type_key, &crate::PredeclaredType::ModfResult { .. }) {
835 (MODF_FUNCTION, "modf", arg_type_name)
836 } else {
837 let other_type_name = if let Some(size) = size {
838 other_type_name_owner = format!("ivec{}", size as u8);
839 &other_type_name_owner
840 } else {
841 "int"
842 };
843 (FREXP_FUNCTION, "frexp", other_type_name)
844 };
845
846 writeln!(self.out)?;
847 if !self.options.version.supports_frexp_function()
848 && matches!(type_key, &crate::PredeclaredType::FrexpResult { .. })
849 {
850 writeln!(
851 self.out,
852 "{struct_name} {defined_func_name}({arg_type_name} arg) {{
853 {other_type_name} other = arg == {arg_type_name}(0) ? {other_type_name}(0) : {other_type_name}({arg_type_name}(1) + log2(arg));
854 {arg_type_name} fract = arg * exp2({arg_type_name}(-other));
855 return {struct_name}(fract, other);
856}}",
857 )?;
858 } else {
859 writeln!(
860 self.out,
861 "{struct_name} {defined_func_name}({arg_type_name} arg) {{
862 {other_type_name} other;
863 {arg_type_name} fract = {called_func_name}(arg, other);
864 return {struct_name}(fract, other);
865}}",
866 )?;
867 }
868 }
869 &crate::PredeclaredType::AtomicCompareExchangeWeakResult(_) => {
870 // Handled by the general struct writing loop earlier.
871 }
872 }
873 }
874
875 // Write all named constants
876 let mut constants = self
877 .module
878 .constants
879 .iter()
880 .filter(|&(_, c)| c.name.is_some())
881 .peekable();
882 while let Some((handle, _)) = constants.next() {
883 self.write_global_constant(handle)?;
884 // Add extra newline for readability on last iteration
885 if constants.peek().is_none() {
886 writeln!(self.out)?;
887 }
888 }
889
890 let ep_info = self.info.get_entry_point(self.entry_point_idx as usize);
891
892 // Write the globals
893 //
894 // Unless explicitly disabled with WriterFlags::INCLUDE_UNUSED_ITEMS,
895 // we filter all globals that aren't used by the selected entry point as they might be
896 // interfere with each other (i.e. two globals with the same location but different with
897 // different classes)
898 let include_unused = self
899 .options
900 .writer_flags
901 .contains(WriterFlags::INCLUDE_UNUSED_ITEMS);
902 for (handle, global) in self.module.global_variables.iter() {
903 let is_unused = ep_info[handle].is_empty();
904 if !include_unused && is_unused {
905 continue;
906 }
907
908 match self.module.types[global.ty].inner {
909 // We treat images separately because they might require
910 // writing the storage format
911 TypeInner::Image {
912 mut dim,
913 arrayed,
914 class,
915 } => {
916 // Gather the storage format if needed
917 let storage_format_access = match self.module.types[global.ty].inner {
918 TypeInner::Image {
919 class: crate::ImageClass::Storage { format, access },
920 ..
921 } => Some((format, access)),
922 _ => None,
923 };
924
925 if dim == crate::ImageDimension::D1 && es {
926 dim = crate::ImageDimension::D2
927 }
928
929 // Gether the location if needed
930 let layout_binding = if self.options.version.supports_explicit_locations() {
931 let br = global.binding.as_ref().unwrap();
932 self.options.binding_map.get(br).cloned()
933 } else {
934 None
935 };
936
937 // Write all the layout qualifiers
938 if layout_binding.is_some() || storage_format_access.is_some() {
939 write!(self.out, "layout(")?;
940 if let Some(binding) = layout_binding {
941 write!(self.out, "binding = {binding}")?;
942 }
943 if let Some((format, _)) = storage_format_access {
944 let format_str = glsl_storage_format(format)?;
945 let separator = match layout_binding {
946 Some(_) => ",",
947 None => "",
948 };
949 write!(self.out, "{separator}{format_str}")?;
950 }
951 write!(self.out, ") ")?;
952 }
953
954 if let Some((_, access)) = storage_format_access {
955 self.write_storage_access(access)?;
956 }
957
958 // All images in glsl are `uniform`
959 // The trailing space is important
960 write!(self.out, "uniform ")?;
961
962 // write the type
963 //
964 // This is way we need the leading space because `write_image_type` doesn't add
965 // any spaces at the beginning or end
966 self.write_image_type(dim, arrayed, class)?;
967
968 // Finally write the name and end the global with a `;`
969 // The leading space is important
970 let global_name = self.get_global_name(handle, global);
971 writeln!(self.out, " {global_name};")?;
972 writeln!(self.out)?;
973
974 self.reflection_names_globals.insert(handle, global_name);
975 }
976 // glsl has no concept of samplers so we just ignore it
977 TypeInner::Sampler { .. } => continue,
978 // All other globals are written by `write_global`
979 _ => {
980 self.write_global(handle, global)?;
981 // Add a newline (only for readability)
982 writeln!(self.out)?;
983 }
984 }
985 }
986
987 for arg in self.entry_point.function.arguments.iter() {
988 self.write_varying(arg.binding.as_ref(), arg.ty, false)?;
989 }
990 if let Some(ref result) = self.entry_point.function.result {
991 self.write_varying(result.binding.as_ref(), result.ty, true)?;
992 }
993 writeln!(self.out)?;
994
995 // Write all regular functions
996 for (handle, function) in self.module.functions.iter() {
997 // Check that the function doesn't use globals that aren't supported
998 // by the current entry point
999 if !include_unused && !ep_info.dominates_global_use(&self.info[handle]) {
1000 continue;
1001 }
1002
1003 let fun_info = &self.info[handle];
1004
1005 // Skip functions that that are not compatible with this entry point's stage.
1006 //
1007 // When validation is enabled, it rejects modules whose entry points try to call
1008 // incompatible functions, so if we got this far, then any functions incompatible
1009 // with our selected entry point must not be used.
1010 //
1011 // When validation is disabled, `fun_info.available_stages` is always just
1012 // `ShaderStages::all()`, so this will write all functions in the module, and
1013 // the downstream GLSL compiler will catch any problems.
1014 if !fun_info.available_stages.contains(ep_info.available_stages) {
1015 continue;
1016 }
1017
1018 // Write the function
1019 self.write_function(back::FunctionType::Function(handle), function, fun_info)?;
1020
1021 writeln!(self.out)?;
1022 }
1023
1024 self.write_function(
1025 back::FunctionType::EntryPoint(self.entry_point_idx),
1026 &self.entry_point.function,
1027 ep_info,
1028 )?;
1029
1030 // Add newline at the end of file
1031 writeln!(self.out)?;
1032
1033 // Collect all reflection info and return it to the user
1034 self.collect_reflection_info()
1035 }
1036
1037 fn write_array_size(
1038 &mut self,
1039 base: Handle<crate::Type>,
1040 size: crate::ArraySize,
1041 ) -> BackendResult {
1042 write!(self.out, "[")?;
1043
1044 // Write the array size
1045 // Writes nothing if `IndexableLength::Dynamic`
1046 match size.resolve(self.module.to_ctx())? {
1047 proc::IndexableLength::Known(size) => {
1048 write!(self.out, "{size}")?;
1049 }
1050 proc::IndexableLength::Dynamic => (),
1051 }
1052
1053 write!(self.out, "]")?;
1054
1055 if let TypeInner::Array {
1056 base: next_base,
1057 size: next_size,
1058 ..
1059 } = self.module.types[base].inner
1060 {
1061 self.write_array_size(next_base, next_size)?;
1062 }
1063
1064 Ok(())
1065 }
1066
1067 /// Helper method used to write value types
1068 ///
1069 /// # Notes
1070 /// Adds no trailing or leading whitespace
1071 fn write_value_type(&mut self, inner: &TypeInner) -> BackendResult {
1072 match *inner {
1073 // Scalars are simple we just get the full name from `glsl_scalar`
1074 TypeInner::Scalar(scalar)
1075 | TypeInner::Atomic(scalar)
1076 | TypeInner::ValuePointer {
1077 size: None,
1078 scalar,
1079 space: _,
1080 } => write!(self.out, "{}", glsl_scalar(scalar)?.full)?,
1081 // Vectors are just `gvecN` where `g` is the scalar prefix and `N` is the vector size
1082 TypeInner::Vector { size, scalar }
1083 | TypeInner::ValuePointer {
1084 size: Some(size),
1085 scalar,
1086 space: _,
1087 } => write!(self.out, "{}vec{}", glsl_scalar(scalar)?.prefix, size as u8)?,
1088 // Matrices are written with `gmatMxN` where `g` is the scalar prefix (only floats and
1089 // doubles are allowed), `M` is the columns count and `N` is the rows count
1090 //
1091 // glsl supports a matrix shorthand `gmatN` where `N` = `M` but it doesn't justify the
1092 // extra branch to write matrices this way
1093 TypeInner::Matrix {
1094 columns,
1095 rows,
1096 scalar,
1097 } => write!(
1098 self.out,
1099 "{}mat{}x{}",
1100 glsl_scalar(scalar)?.prefix,
1101 columns as u8,
1102 rows as u8
1103 )?,
1104 // GLSL arrays are written as `type name[size]`
1105 // Here we only write the size of the array i.e. `[size]`
1106 // Base `type` and `name` should be written outside
1107 TypeInner::Array { base, size, .. } => self.write_array_size(base, size)?,
1108 // Write all variants instead of `_` so that if new variants are added a
1109 // no exhaustiveness error is thrown
1110 TypeInner::Pointer { .. }
1111 | TypeInner::Struct { .. }
1112 | TypeInner::Image { .. }
1113 | TypeInner::Sampler { .. }
1114 | TypeInner::AccelerationStructure { .. }
1115 | TypeInner::RayQuery { .. }
1116 | TypeInner::BindingArray { .. } => {
1117 return Err(Error::Custom(format!("Unable to write type {inner:?}")))
1118 }
1119 }
1120
1121 Ok(())
1122 }
1123
1124 /// Helper method used to write non image/sampler types
1125 ///
1126 /// # Notes
1127 /// Adds no trailing or leading whitespace
1128 fn write_type(&mut self, ty: Handle<crate::Type>) -> BackendResult {
1129 match self.module.types[ty].inner {
1130 // glsl has no pointer types so just write types as normal and loads are skipped
1131 TypeInner::Pointer { base, .. } => self.write_type(base),
1132 // glsl structs are written as just the struct name
1133 TypeInner::Struct { .. } => {
1134 // Get the struct name
1135 let name = &self.names[&NameKey::Type(ty)];
1136 write!(self.out, "{name}")?;
1137 Ok(())
1138 }
1139 // glsl array has the size separated from the base type
1140 TypeInner::Array { base, .. } => self.write_type(base),
1141 ref other => self.write_value_type(other),
1142 }
1143 }
1144
1145 /// Helper method to write a image type
1146 ///
1147 /// # Notes
1148 /// Adds no leading or trailing whitespace
1149 fn write_image_type(
1150 &mut self,
1151 dim: crate::ImageDimension,
1152 arrayed: bool,
1153 class: crate::ImageClass,
1154 ) -> BackendResult {
1155 // glsl images consist of four parts the scalar prefix, the image "type", the dimensions
1156 // and modifiers
1157 //
1158 // There exists two image types
1159 // - sampler - for sampled images
1160 // - image - for storage images
1161 //
1162 // There are three possible modifiers that can be used together and must be written in
1163 // this order to be valid
1164 // - MS - used if it's a multisampled image
1165 // - Array - used if it's an image array
1166 // - Shadow - used if it's a depth image
1167 use crate::ImageClass as Ic;
1168 use crate::Scalar as S;
1169 let float = S {
1170 kind: crate::ScalarKind::Float,
1171 width: 4,
1172 };
1173 let (base, scalar, ms, comparison) = match class {
1174 Ic::Sampled { kind, multi: true } => ("sampler", S { kind, width: 4 }, "MS", ""),
1175 Ic::Sampled { kind, multi: false } => ("sampler", S { kind, width: 4 }, "", ""),
1176 Ic::Depth { multi: true } => ("sampler", float, "MS", ""),
1177 Ic::Depth { multi: false } => ("sampler", float, "", "Shadow"),
1178 Ic::Storage { format, .. } => ("image", format.into(), "", ""),
1179 };
1180
1181 let precision = if self.options.version.is_es() {
1182 "highp "
1183 } else {
1184 ""
1185 };
1186
1187 write!(
1188 self.out,
1189 "{}{}{}{}{}{}{}",
1190 precision,
1191 glsl_scalar(scalar)?.prefix,
1192 base,
1193 glsl_dimension(dim),
1194 ms,
1195 if arrayed { "Array" } else { "" },
1196 comparison
1197 )?;
1198
1199 Ok(())
1200 }
1201
1202 /// Helper method used by [Self::write_global] to write just the layout part of
1203 /// a non image/sampler global variable, if applicable.
1204 ///
1205 /// # Notes
1206 ///
1207 /// Adds trailing whitespace if any layout qualifier is written
1208 fn write_global_layout(&mut self, global: &crate::GlobalVariable) -> BackendResult {
1209 // Determine which (if any) explicit memory layout to use, and whether we support it
1210 let layout = match global.space {
1211 crate::AddressSpace::Uniform => {
1212 if !self.options.version.supports_std140_layout() {
1213 return Err(Error::Custom(
1214 "Uniform address space requires std140 layout support".to_string(),
1215 ));
1216 }
1217
1218 Some("std140")
1219 }
1220 crate::AddressSpace::Storage { .. } => {
1221 if !self.options.version.supports_std430_layout() {
1222 return Err(Error::Custom(
1223 "Storage address space requires std430 layout support".to_string(),
1224 ));
1225 }
1226
1227 Some("std430")
1228 }
1229 _ => None,
1230 };
1231
1232 // If our version supports explicit layouts, we can also output the explicit binding
1233 // if we have it
1234 if self.options.version.supports_explicit_locations() {
1235 if let Some(ref br) = global.binding {
1236 match self.options.binding_map.get(br) {
1237 Some(binding) => {
1238 write!(self.out, "layout(")?;
1239
1240 if let Some(layout) = layout {
1241 write!(self.out, "{layout}, ")?;
1242 }
1243
1244 write!(self.out, "binding = {binding}) ")?;
1245
1246 return Ok(());
1247 }
1248 None => {
1249 log::debug!("unassigned binding for {:?}", global.name);
1250 }
1251 }
1252 }
1253 }
1254
1255 // Either no explicit bindings are supported or we didn't have any.
1256 // Write just the memory layout.
1257 if let Some(layout) = layout {
1258 write!(self.out, "layout({layout}) ")?;
1259 }
1260
1261 Ok(())
1262 }
1263
1264 /// Helper method used to write non images/sampler globals
1265 ///
1266 /// # Notes
1267 /// Adds a newline
1268 ///
1269 /// # Panics
1270 /// If the global has type sampler
1271 fn write_global(
1272 &mut self,
1273 handle: Handle<crate::GlobalVariable>,
1274 global: &crate::GlobalVariable,
1275 ) -> BackendResult {
1276 self.write_global_layout(global)?;
1277
1278 if let crate::AddressSpace::Storage { access } = global.space {
1279 self.write_storage_access(access)?;
1280 }
1281
1282 if let Some(storage_qualifier) = glsl_storage_qualifier(global.space) {
1283 write!(self.out, "{storage_qualifier} ")?;
1284 }
1285
1286 match global.space {
1287 crate::AddressSpace::Private => {
1288 self.write_simple_global(handle, global)?;
1289 }
1290 crate::AddressSpace::WorkGroup => {
1291 self.write_simple_global(handle, global)?;
1292 }
1293 crate::AddressSpace::PushConstant => {
1294 self.write_simple_global(handle, global)?;
1295 }
1296 crate::AddressSpace::Uniform => {
1297 self.write_interface_block(handle, global)?;
1298 }
1299 crate::AddressSpace::Storage { .. } => {
1300 self.write_interface_block(handle, global)?;
1301 }
1302 // A global variable in the `Function` address space is a
1303 // contradiction in terms.
1304 crate::AddressSpace::Function => unreachable!(),
1305 // Textures and samplers are handled directly in `Writer::write`.
1306 crate::AddressSpace::Handle => unreachable!(),
1307 }
1308
1309 Ok(())
1310 }
1311
1312 fn write_simple_global(
1313 &mut self,
1314 handle: Handle<crate::GlobalVariable>,
1315 global: &crate::GlobalVariable,
1316 ) -> BackendResult {
1317 self.write_type(global.ty)?;
1318 write!(self.out, " ")?;
1319 self.write_global_name(handle, global)?;
1320
1321 if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
1322 self.write_array_size(base, size)?;
1323 }
1324
1325 if global.space.initializable() && is_value_init_supported(self.module, global.ty) {
1326 write!(self.out, " = ")?;
1327 if let Some(init) = global.init {
1328 self.write_const_expr(init, &self.module.global_expressions)?;
1329 } else {
1330 self.write_zero_init_value(global.ty)?;
1331 }
1332 }
1333
1334 writeln!(self.out, ";")?;
1335
1336 if let crate::AddressSpace::PushConstant = global.space {
1337 let global_name = self.get_global_name(handle, global);
1338 self.reflection_names_globals.insert(handle, global_name);
1339 }
1340
1341 Ok(())
1342 }
1343
1344 /// Write an interface block for a single Naga global.
1345 ///
1346 /// Write `block_name { members }`. Since `block_name` must be unique
1347 /// between blocks and structs, we add `_block_ID` where `ID` is a
1348 /// `IdGenerator` generated number. Write `members` in the same way we write
1349 /// a struct's members.
1350 fn write_interface_block(
1351 &mut self,
1352 handle: Handle<crate::GlobalVariable>,
1353 global: &crate::GlobalVariable,
1354 ) -> BackendResult {
1355 // Write the block name, it's just the struct name appended with `_block_ID`
1356 let ty_name = &self.names[&NameKey::Type(global.ty)];
1357 let block_name = format!(
1358 "{}_block_{}{:?}",
1359 // avoid double underscores as they are reserved in GLSL
1360 ty_name.trim_end_matches('_'),
1361 self.block_id.generate(),
1362 self.entry_point.stage,
1363 );
1364 write!(self.out, "{block_name} ")?;
1365 self.reflection_names_globals.insert(handle, block_name);
1366
1367 match self.module.types[global.ty].inner {
1368 TypeInner::Struct { ref members, .. }
1369 if self.module.types[members.last().unwrap().ty]
1370 .inner
1371 .is_dynamically_sized(&self.module.types) =>
1372 {
1373 // Structs with dynamically sized arrays must have their
1374 // members lifted up as members of the interface block. GLSL
1375 // can't write such struct types anyway.
1376 self.write_struct_body(global.ty, members)?;
1377 write!(self.out, " ")?;
1378 self.write_global_name(handle, global)?;
1379 }
1380 _ => {
1381 // A global of any other type is written as the sole member
1382 // of the interface block. Since the interface block is
1383 // anonymous, this becomes visible in the global scope.
1384 write!(self.out, "{{ ")?;
1385 self.write_type(global.ty)?;
1386 write!(self.out, " ")?;
1387 self.write_global_name(handle, global)?;
1388 if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
1389 self.write_array_size(base, size)?;
1390 }
1391 write!(self.out, "; }}")?;
1392 }
1393 }
1394
1395 writeln!(self.out, ";")?;
1396
1397 Ok(())
1398 }
1399
1400 /// Helper method used to find which expressions of a given function require baking
1401 ///
1402 /// # Notes
1403 /// Clears `need_bake_expressions` set before adding to it
1404 fn update_expressions_to_bake(&mut self, func: &crate::Function, info: &valid::FunctionInfo) {
1405 use crate::Expression;
1406 self.need_bake_expressions.clear();
1407 for (fun_handle, expr) in func.expressions.iter() {
1408 let expr_info = &info[fun_handle];
1409 let min_ref_count = func.expressions[fun_handle].bake_ref_count();
1410 if min_ref_count <= expr_info.ref_count {
1411 self.need_bake_expressions.insert(fun_handle);
1412 }
1413
1414 let inner = expr_info.ty.inner_with(&self.module.types);
1415
1416 if let Expression::Math {
1417 fun,
1418 arg,
1419 arg1,
1420 arg2,
1421 ..
1422 } = *expr
1423 {
1424 match fun {
1425 crate::MathFunction::Dot => {
1426 // if the expression is a Dot product with integer arguments,
1427 // then the args needs baking as well
1428 if let TypeInner::Scalar(crate::Scalar {
1429 kind: crate::ScalarKind::Sint | crate::ScalarKind::Uint,
1430 ..
1431 }) = *inner
1432 {
1433 self.need_bake_expressions.insert(arg);
1434 self.need_bake_expressions.insert(arg1.unwrap());
1435 }
1436 }
1437 crate::MathFunction::Dot4U8Packed | crate::MathFunction::Dot4I8Packed => {
1438 self.need_bake_expressions.insert(arg);
1439 self.need_bake_expressions.insert(arg1.unwrap());
1440 }
1441 crate::MathFunction::Pack4xI8
1442 | crate::MathFunction::Pack4xU8
1443 | crate::MathFunction::Pack4xI8Clamp
1444 | crate::MathFunction::Pack4xU8Clamp
1445 | crate::MathFunction::Unpack4xI8
1446 | crate::MathFunction::Unpack4xU8
1447 | crate::MathFunction::QuantizeToF16 => {
1448 self.need_bake_expressions.insert(arg);
1449 }
1450 /* crate::MathFunction::Pack4x8unorm | */
1451 crate::MathFunction::Unpack4x8snorm
1452 if !self.options.version.supports_pack_unpack_4x8() =>
1453 {
1454 // We have a fallback if the platform doesn't natively support these
1455 self.need_bake_expressions.insert(arg);
1456 }
1457 /* crate::MathFunction::Pack4x8unorm | */
1458 crate::MathFunction::Unpack4x8unorm
1459 if !self.options.version.supports_pack_unpack_4x8() =>
1460 {
1461 self.need_bake_expressions.insert(arg);
1462 }
1463 /* crate::MathFunction::Pack2x16snorm | */
1464 crate::MathFunction::Unpack2x16snorm
1465 if !self.options.version.supports_pack_unpack_snorm_2x16() =>
1466 {
1467 self.need_bake_expressions.insert(arg);
1468 }
1469 /* crate::MathFunction::Pack2x16unorm | */
1470 crate::MathFunction::Unpack2x16unorm
1471 if !self.options.version.supports_pack_unpack_unorm_2x16() =>
1472 {
1473 self.need_bake_expressions.insert(arg);
1474 }
1475 crate::MathFunction::ExtractBits => {
1476 // Only argument 1 is re-used.
1477 self.need_bake_expressions.insert(arg1.unwrap());
1478 }
1479 crate::MathFunction::InsertBits => {
1480 // Only argument 2 is re-used.
1481 self.need_bake_expressions.insert(arg2.unwrap());
1482 }
1483 crate::MathFunction::CountLeadingZeros => {
1484 if let Some(crate::ScalarKind::Sint) = inner.scalar_kind() {
1485 self.need_bake_expressions.insert(arg);
1486 }
1487 }
1488 _ => {}
1489 }
1490 }
1491 }
1492
1493 for statement in func.body.iter() {
1494 match *statement {
1495 crate::Statement::Atomic {
1496 fun: crate::AtomicFunction::Exchange { compare: Some(cmp) },
1497 ..
1498 } => {
1499 self.need_bake_expressions.insert(cmp);
1500 }
1501 _ => {}
1502 }
1503 }
1504 }
1505
1506 /// Helper method used to get a name for a global
1507 ///
1508 /// Globals have different naming schemes depending on their binding:
1509 /// - Globals without bindings use the name from the [`Namer`](crate::proc::Namer)
1510 /// - Globals with resource binding are named `_group_X_binding_Y` where `X`
1511 /// is the group and `Y` is the binding
1512 fn get_global_name(
1513 &self,
1514 handle: Handle<crate::GlobalVariable>,
1515 global: &crate::GlobalVariable,
1516 ) -> String {
1517 match (&global.binding, global.space) {
1518 (&Some(ref br), _) => {
1519 format!(
1520 "_group_{}_binding_{}_{}",
1521 br.group,
1522 br.binding,
1523 self.entry_point.stage.to_str()
1524 )
1525 }
1526 (&None, crate::AddressSpace::PushConstant) => {
1527 format!("_push_constant_binding_{}", self.entry_point.stage.to_str())
1528 }
1529 (&None, _) => self.names[&NameKey::GlobalVariable(handle)].clone(),
1530 }
1531 }
1532
1533 /// Helper method used to write a name for a global without additional heap allocation
1534 fn write_global_name(
1535 &mut self,
1536 handle: Handle<crate::GlobalVariable>,
1537 global: &crate::GlobalVariable,
1538 ) -> BackendResult {
1539 match (&global.binding, global.space) {
1540 (&Some(ref br), _) => write!(
1541 self.out,
1542 "_group_{}_binding_{}_{}",
1543 br.group,
1544 br.binding,
1545 self.entry_point.stage.to_str()
1546 )?,
1547 (&None, crate::AddressSpace::PushConstant) => write!(
1548 self.out,
1549 "_push_constant_binding_{}",
1550 self.entry_point.stage.to_str()
1551 )?,
1552 (&None, _) => write!(
1553 self.out,
1554 "{}",
1555 &self.names[&NameKey::GlobalVariable(handle)]
1556 )?,
1557 }
1558
1559 Ok(())
1560 }
1561
1562 /// Write a GLSL global that will carry a Naga entry point's argument or return value.
1563 ///
1564 /// A Naga entry point's arguments and return value are rendered in GLSL as
1565 /// variables at global scope with the `in` and `out` storage qualifiers.
1566 /// The code we generate for `main` loads from all the `in` globals into
1567 /// appropriately named locals. Before it returns, `main` assigns the
1568 /// components of its return value into all the `out` globals.
1569 ///
1570 /// This function writes a declaration for one such GLSL global,
1571 /// representing a value passed into or returned from [`self.entry_point`]
1572 /// that has a [`Location`] binding. The global's name is generated based on
1573 /// the location index and the shader stages being connected; see
1574 /// [`VaryingName`]. This means we don't need to know the names of
1575 /// arguments, just their types and bindings.
1576 ///
1577 /// Emit nothing for entry point arguments or return values with [`BuiltIn`]
1578 /// bindings; `main` will read from or assign to the appropriate GLSL
1579 /// special variable; these are pre-declared. As an exception, we do declare
1580 /// `gl_Position` or `gl_FragCoord` with the `invariant` qualifier if
1581 /// needed.
1582 ///
1583 /// Use `output` together with [`self.entry_point.stage`] to determine which
1584 /// shader stages are being connected, and choose the `in` or `out` storage
1585 /// qualifier.
1586 ///
1587 /// [`self.entry_point`]: Writer::entry_point
1588 /// [`self.entry_point.stage`]: crate::EntryPoint::stage
1589 /// [`Location`]: crate::Binding::Location
1590 /// [`BuiltIn`]: crate::Binding::BuiltIn
1591 fn write_varying(
1592 &mut self,
1593 binding: Option<&crate::Binding>,
1594 ty: Handle<crate::Type>,
1595 output: bool,
1596 ) -> Result<(), Error> {
1597 // For a struct, emit a separate global for each member with a binding.
1598 if let TypeInner::Struct { ref members, .. } = self.module.types[ty].inner {
1599 for member in members {
1600 self.write_varying(member.binding.as_ref(), member.ty, output)?;
1601 }
1602 return Ok(());
1603 }
1604
1605 let binding = match binding {
1606 None => return Ok(()),
1607 Some(binding) => binding,
1608 };
1609
1610 let (location, interpolation, sampling, blend_src) = match *binding {
1611 crate::Binding::Location {
1612 location,
1613 interpolation,
1614 sampling,
1615 blend_src,
1616 } => (location, interpolation, sampling, blend_src),
1617 crate::Binding::BuiltIn(built_in) => {
1618 match built_in {
1619 crate::BuiltIn::Position { invariant: true } => {
1620 match (self.options.version, self.entry_point.stage) {
1621 (
1622 Version::Embedded {
1623 version: 300,
1624 is_webgl: true,
1625 },
1626 ShaderStage::Fragment,
1627 ) => {
1628 // `invariant gl_FragCoord` is not allowed in WebGL2 and possibly
1629 // OpenGL ES in general (waiting on confirmation).
1630 //
1631 // See https://github.com/KhronosGroup/WebGL/issues/3518
1632 }
1633 _ => {
1634 writeln!(
1635 self.out,
1636 "invariant {};",
1637 glsl_built_in(
1638 built_in,
1639 VaryingOptions::from_writer_options(self.options, output)
1640 )
1641 )?;
1642 }
1643 }
1644 }
1645 crate::BuiltIn::ClipDistance => {
1646 // Re-declare `gl_ClipDistance` with number of clip planes.
1647 let TypeInner::Array { size, .. } = self.module.types[ty].inner else {
1648 unreachable!();
1649 };
1650 let proc::IndexableLength::Known(size) =
1651 size.resolve(self.module.to_ctx())?
1652 else {
1653 unreachable!();
1654 };
1655 self.clip_distance_count = size;
1656 writeln!(self.out, "out float gl_ClipDistance[{size}];")?;
1657 }
1658 _ => {}
1659 }
1660 return Ok(());
1661 }
1662 };
1663
1664 // Write the interpolation modifier if needed
1665 //
1666 // We ignore all interpolation and auxiliary modifiers that aren't used in fragment
1667 // shaders' input globals or vertex shaders' output globals.
1668 let emit_interpolation_and_auxiliary = match self.entry_point.stage {
1669 ShaderStage::Vertex => output,
1670 ShaderStage::Fragment => !output,
1671 ShaderStage::Compute => false,
1672 ShaderStage::Task | ShaderStage::Mesh => unreachable!(),
1673 };
1674
1675 // Write the I/O locations, if allowed
1676 let io_location = if self.options.version.supports_explicit_locations()
1677 || !emit_interpolation_and_auxiliary
1678 {
1679 if self.options.version.supports_io_locations() {
1680 if let Some(blend_src) = blend_src {
1681 write!(
1682 self.out,
1683 "layout(location = {location}, index = {blend_src}) "
1684 )?;
1685 } else {
1686 write!(self.out, "layout(location = {location}) ")?;
1687 }
1688 None
1689 } else {
1690 Some(VaryingLocation {
1691 location,
1692 index: blend_src.unwrap_or(0),
1693 })
1694 }
1695 } else {
1696 None
1697 };
1698
1699 // Write the interpolation qualifier.
1700 if let Some(interp) = interpolation {
1701 if emit_interpolation_and_auxiliary {
1702 write!(self.out, "{} ", glsl_interpolation(interp))?;
1703 }
1704 }
1705
1706 // Write the sampling auxiliary qualifier.
1707 //
1708 // Before GLSL 4.2, the `centroid` and `sample` qualifiers were required to appear
1709 // immediately before the `in` / `out` qualifier, so we'll just follow that rule
1710 // here, regardless of the version.
1711 if let Some(sampling) = sampling {
1712 if emit_interpolation_and_auxiliary {
1713 if let Some(qualifier) = glsl_sampling(sampling)? {
1714 write!(self.out, "{qualifier} ")?;
1715 }
1716 }
1717 }
1718
1719 // Write the input/output qualifier.
1720 write!(self.out, "{} ", if output { "out" } else { "in" })?;
1721
1722 // Write the type
1723 // `write_type` adds no leading or trailing spaces
1724 self.write_type(ty)?;
1725
1726 // Finally write the global name and end the global with a `;` and a newline
1727 // Leading space is important
1728 let vname = VaryingName {
1729 binding: &crate::Binding::Location {
1730 location,
1731 interpolation: None,
1732 sampling: None,
1733 blend_src,
1734 },
1735 stage: self.entry_point.stage,
1736 options: VaryingOptions::from_writer_options(self.options, output),
1737 };
1738 writeln!(self.out, " {vname};")?;
1739
1740 if let Some(location) = io_location {
1741 self.varying.insert(vname.to_string(), location);
1742 }
1743
1744 Ok(())
1745 }
1746
1747 /// Helper method used to write functions (both entry points and regular functions)
1748 ///
1749 /// # Notes
1750 /// Adds a newline
1751 fn write_function(
1752 &mut self,
1753 ty: back::FunctionType,
1754 func: &crate::Function,
1755 info: &valid::FunctionInfo,
1756 ) -> BackendResult {
1757 // Create a function context for the function being written
1758 let ctx = back::FunctionCtx {
1759 ty,
1760 info,
1761 expressions: &func.expressions,
1762 named_expressions: &func.named_expressions,
1763 };
1764
1765 self.named_expressions.clear();
1766 self.update_expressions_to_bake(func, info);
1767
1768 // Write the function header
1769 //
1770 // glsl headers are the same as in c:
1771 // `ret_type name(args)`
1772 // `ret_type` is the return type
1773 // `name` is the function name
1774 // `args` is a comma separated list of `type name`
1775 // | - `type` is the argument type
1776 // | - `name` is the argument name
1777
1778 // Start by writing the return type if any otherwise write void
1779 // This is the only place where `void` is a valid type
1780 // (though it's more a keyword than a type)
1781 if let back::FunctionType::EntryPoint(_) = ctx.ty {
1782 write!(self.out, "void")?;
1783 } else if let Some(ref result) = func.result {
1784 self.write_type(result.ty)?;
1785 if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner {
1786 self.write_array_size(base, size)?
1787 }
1788 } else {
1789 write!(self.out, "void")?;
1790 }
1791
1792 // Write the function name and open parentheses for the argument list
1793 let function_name = match ctx.ty {
1794 back::FunctionType::Function(handle) => &self.names[&NameKey::Function(handle)],
1795 back::FunctionType::EntryPoint(_) => "main",
1796 };
1797 write!(self.out, " {function_name}(")?;
1798
1799 // Write the comma separated argument list
1800 //
1801 // We need access to `Self` here so we use the reference passed to the closure as an
1802 // argument instead of capturing as that would cause a borrow checker error
1803 let arguments = match ctx.ty {
1804 back::FunctionType::EntryPoint(_) => &[][..],
1805 back::FunctionType::Function(_) => &func.arguments,
1806 };
1807 let arguments: Vec<_> = arguments
1808 .iter()
1809 .enumerate()
1810 .filter(|&(_, arg)| match self.module.types[arg.ty].inner {
1811 TypeInner::Sampler { .. } => false,
1812 _ => true,
1813 })
1814 .collect();
1815 self.write_slice(&arguments, |this, _, &(i, arg)| {
1816 // Write the argument type
1817 match this.module.types[arg.ty].inner {
1818 // We treat images separately because they might require
1819 // writing the storage format
1820 TypeInner::Image {
1821 dim,
1822 arrayed,
1823 class,
1824 } => {
1825 // Write the storage format if needed
1826 if let TypeInner::Image {
1827 class: crate::ImageClass::Storage { format, .. },
1828 ..
1829 } = this.module.types[arg.ty].inner
1830 {
1831 write!(this.out, "layout({}) ", glsl_storage_format(format)?)?;
1832 }
1833
1834 // write the type
1835 //
1836 // This is way we need the leading space because `write_image_type` doesn't add
1837 // any spaces at the beginning or end
1838 this.write_image_type(dim, arrayed, class)?;
1839 }
1840 TypeInner::Pointer { base, .. } => {
1841 // write parameter qualifiers
1842 write!(this.out, "inout ")?;
1843 this.write_type(base)?;
1844 }
1845 // All other types are written by `write_type`
1846 _ => {
1847 this.write_type(arg.ty)?;
1848 }
1849 }
1850
1851 // Write the argument name
1852 // The leading space is important
1853 write!(this.out, " {}", &this.names[&ctx.argument_key(i as u32)])?;
1854
1855 // Write array size
1856 match this.module.types[arg.ty].inner {
1857 TypeInner::Array { base, size, .. } => {
1858 this.write_array_size(base, size)?;
1859 }
1860 TypeInner::Pointer { base, .. } => {
1861 if let TypeInner::Array { base, size, .. } = this.module.types[base].inner {
1862 this.write_array_size(base, size)?;
1863 }
1864 }
1865 _ => {}
1866 }
1867
1868 Ok(())
1869 })?;
1870
1871 // Close the parentheses and open braces to start the function body
1872 writeln!(self.out, ") {{")?;
1873
1874 if self.options.zero_initialize_workgroup_memory
1875 && ctx.ty.is_compute_entry_point(self.module)
1876 {
1877 self.write_workgroup_variables_initialization(&ctx)?;
1878 }
1879
1880 // Compose the function arguments from globals, in case of an entry point.
1881 if let back::FunctionType::EntryPoint(ep_index) = ctx.ty {
1882 let stage = self.module.entry_points[ep_index as usize].stage;
1883 for (index, arg) in func.arguments.iter().enumerate() {
1884 write!(self.out, "{}", back::INDENT)?;
1885 self.write_type(arg.ty)?;
1886 let name = &self.names[&NameKey::EntryPointArgument(ep_index, index as u32)];
1887 write!(self.out, " {name}")?;
1888 write!(self.out, " = ")?;
1889 match self.module.types[arg.ty].inner {
1890 TypeInner::Struct { ref members, .. } => {
1891 self.write_type(arg.ty)?;
1892 write!(self.out, "(")?;
1893 for (index, member) in members.iter().enumerate() {
1894 let varying_name = VaryingName {
1895 binding: member.binding.as_ref().unwrap(),
1896 stage,
1897 options: VaryingOptions::from_writer_options(self.options, false),
1898 };
1899 if index != 0 {
1900 write!(self.out, ", ")?;
1901 }
1902 write!(self.out, "{varying_name}")?;
1903 }
1904 writeln!(self.out, ");")?;
1905 }
1906 _ => {
1907 let varying_name = VaryingName {
1908 binding: arg.binding.as_ref().unwrap(),
1909 stage,
1910 options: VaryingOptions::from_writer_options(self.options, false),
1911 };
1912 writeln!(self.out, "{varying_name};")?;
1913 }
1914 }
1915 }
1916 }
1917
1918 // Write all function locals
1919 // Locals are `type name (= init)?;` where the init part (including the =) are optional
1920 //
1921 // Always adds a newline
1922 for (handle, local) in func.local_variables.iter() {
1923 // Write indentation (only for readability) and the type
1924 // `write_type` adds no trailing space
1925 write!(self.out, "{}", back::INDENT)?;
1926 self.write_type(local.ty)?;
1927
1928 // Write the local name
1929 // The leading space is important
1930 write!(self.out, " {}", self.names[&ctx.name_key(handle)])?;
1931 // Write size for array type
1932 if let TypeInner::Array { base, size, .. } = self.module.types[local.ty].inner {
1933 self.write_array_size(base, size)?;
1934 }
1935 // Write the local initializer if needed
1936 if let Some(init) = local.init {
1937 // Put the equal signal only if there's a initializer
1938 // The leading and trailing spaces aren't needed but help with readability
1939 write!(self.out, " = ")?;
1940
1941 // Write the constant
1942 // `write_constant` adds no trailing or leading space/newline
1943 self.write_expr(init, &ctx)?;
1944 } else if is_value_init_supported(self.module, local.ty) {
1945 write!(self.out, " = ")?;
1946 self.write_zero_init_value(local.ty)?;
1947 }
1948
1949 // Finish the local with `;` and add a newline (only for readability)
1950 writeln!(self.out, ";")?
1951 }
1952
1953 // Write the function body (statement list)
1954 for sta in func.body.iter() {
1955 // Write a statement, the indentation should always be 1 when writing the function body
1956 // `write_stmt` adds a newline
1957 self.write_stmt(sta, &ctx, back::Level(1))?;
1958 }
1959
1960 // Close braces and add a newline
1961 writeln!(self.out, "}}")?;
1962
1963 Ok(())
1964 }
1965
1966 fn write_workgroup_variables_initialization(
1967 &mut self,
1968 ctx: &back::FunctionCtx,
1969 ) -> BackendResult {
1970 let mut vars = self
1971 .module
1972 .global_variables
1973 .iter()
1974 .filter(|&(handle, var)| {
1975 !ctx.info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup
1976 })
1977 .peekable();
1978
1979 if vars.peek().is_some() {
1980 let level = back::Level(1);
1981
1982 writeln!(self.out, "{level}if (gl_LocalInvocationID == uvec3(0u)) {{")?;
1983
1984 for (handle, var) in vars {
1985 let name = &self.names[&NameKey::GlobalVariable(handle)];
1986 write!(self.out, "{}{} = ", level.next(), name)?;
1987 self.write_zero_init_value(var.ty)?;
1988 writeln!(self.out, ";")?;
1989 }
1990
1991 writeln!(self.out, "{level}}}")?;
1992 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
1993 }
1994
1995 Ok(())
1996 }
1997
1998 /// Write a list of comma separated `T` values using a writer function `F`.
1999 ///
2000 /// The writer function `F` receives a mutable reference to `self` that if needed won't cause
2001 /// borrow checker issues (using for example a closure with `self` will cause issues), the
2002 /// second argument is the 0 based index of the element on the list, and the last element is
2003 /// a reference to the element `T` being written
2004 ///
2005 /// # Notes
2006 /// - Adds no newlines or leading/trailing whitespace
2007 /// - The last element won't have a trailing `,`
2008 fn write_slice<T, F: FnMut(&mut Self, u32, &T) -> BackendResult>(
2009 &mut self,
2010 data: &[T],
2011 mut f: F,
2012 ) -> BackendResult {
2013 // Loop through `data` invoking `f` for each element
2014 for (index, item) in data.iter().enumerate() {
2015 if index != 0 {
2016 write!(self.out, ", ")?;
2017 }
2018 f(self, index as u32, item)?;
2019 }
2020
2021 Ok(())
2022 }
2023
2024 /// Helper method used to write global constants
2025 fn write_global_constant(&mut self, handle: Handle<crate::Constant>) -> BackendResult {
2026 write!(self.out, "const ")?;
2027 let constant = &self.module.constants[handle];
2028 self.write_type(constant.ty)?;
2029 let name = &self.names[&NameKey::Constant(handle)];
2030 write!(self.out, " {name}")?;
2031 if let TypeInner::Array { base, size, .. } = self.module.types[constant.ty].inner {
2032 self.write_array_size(base, size)?;
2033 }
2034 write!(self.out, " = ")?;
2035 self.write_const_expr(constant.init, &self.module.global_expressions)?;
2036 writeln!(self.out, ";")?;
2037 Ok(())
2038 }
2039
2040 /// Helper method used to output a dot product as an arithmetic expression
2041 ///
2042 fn write_dot_product(
2043 &mut self,
2044 arg: Handle<crate::Expression>,
2045 arg1: Handle<crate::Expression>,
2046 size: usize,
2047 ctx: &back::FunctionCtx,
2048 ) -> BackendResult {
2049 // Write parentheses around the dot product expression to prevent operators
2050 // with different precedences from applying earlier.
2051 write!(self.out, "(")?;
2052
2053 // Cycle through all the components of the vector
2054 for index in 0..size {
2055 let component = back::COMPONENTS[index];
2056 // Write the addition to the previous product
2057 // This will print an extra '+' at the beginning but that is fine in glsl
2058 write!(self.out, " + ")?;
2059 // Write the first vector expression, this expression is marked to be
2060 // cached so unless it can't be cached (for example, it's a Constant)
2061 // it shouldn't produce large expressions.
2062 self.write_expr(arg, ctx)?;
2063 // Access the current component on the first vector
2064 write!(self.out, ".{component} * ")?;
2065 // Write the second vector expression, this expression is marked to be
2066 // cached so unless it can't be cached (for example, it's a Constant)
2067 // it shouldn't produce large expressions.
2068 self.write_expr(arg1, ctx)?;
2069 // Access the current component on the second vector
2070 write!(self.out, ".{component}")?;
2071 }
2072
2073 write!(self.out, ")")?;
2074 Ok(())
2075 }
2076
2077 /// Helper method used to write structs
2078 ///
2079 /// # Notes
2080 /// Ends in a newline
2081 fn write_struct_body(
2082 &mut self,
2083 handle: Handle<crate::Type>,
2084 members: &[crate::StructMember],
2085 ) -> BackendResult {
2086 // glsl structs are written as in C
2087 // `struct name() { members };`
2088 // | `struct` is a keyword
2089 // | `name` is the struct name
2090 // | `members` is a semicolon separated list of `type name`
2091 // | `type` is the member type
2092 // | `name` is the member name
2093 writeln!(self.out, "{{")?;
2094
2095 for (idx, member) in members.iter().enumerate() {
2096 // The indentation is only for readability
2097 write!(self.out, "{}", back::INDENT)?;
2098
2099 match self.module.types[member.ty].inner {
2100 TypeInner::Array {
2101 base,
2102 size,
2103 stride: _,
2104 } => {
2105 self.write_type(base)?;
2106 write!(
2107 self.out,
2108 " {}",
2109 &self.names[&NameKey::StructMember(handle, idx as u32)]
2110 )?;
2111 // Write [size]
2112 self.write_array_size(base, size)?;
2113 // Newline is important
2114 writeln!(self.out, ";")?;
2115 }
2116 _ => {
2117 // Write the member type
2118 // Adds no trailing space
2119 self.write_type(member.ty)?;
2120
2121 // Write the member name and put a semicolon
2122 // The leading space is important
2123 // All members must have a semicolon even the last one
2124 writeln!(
2125 self.out,
2126 " {};",
2127 &self.names[&NameKey::StructMember(handle, idx as u32)]
2128 )?;
2129 }
2130 }
2131 }
2132
2133 write!(self.out, "}}")?;
2134 Ok(())
2135 }
2136
2137 /// Helper method used to write statements
2138 ///
2139 /// # Notes
2140 /// Always adds a newline
2141 fn write_stmt(
2142 &mut self,
2143 sta: &crate::Statement,
2144 ctx: &back::FunctionCtx,
2145 level: back::Level,
2146 ) -> BackendResult {
2147 use crate::Statement;
2148
2149 match *sta {
2150 // This is where we can generate intermediate constants for some expression types.
2151 Statement::Emit(ref range) => {
2152 for handle in range.clone() {
2153 let ptr_class = ctx.resolve_type(handle, &self.module.types).pointer_space();
2154 let expr_name = if ptr_class.is_some() {
2155 // GLSL can't save a pointer-valued expression in a variable,
2156 // but we shouldn't ever need to: they should never be named expressions,
2157 // and none of the expression types flagged by bake_ref_count can be pointer-valued.
2158 None
2159 } else if let Some(name) = ctx.named_expressions.get(&handle) {
2160 // Front end provides names for all variables at the start of writing.
2161 // But we write them to step by step. We need to recache them
2162 // Otherwise, we could accidentally write variable name instead of full expression.
2163 // Also, we use sanitized names! It defense backend from generating variable with name from reserved keywords.
2164 Some(self.namer.call(name))
2165 } else if self.need_bake_expressions.contains(&handle) {
2166 Some(Baked(handle).to_string())
2167 } else {
2168 None
2169 };
2170
2171 // If we are going to write an `ImageLoad` next and the target image
2172 // is sampled and we are using the `Restrict` policy for bounds
2173 // checking images we need to write a local holding the clamped lod.
2174 if let crate::Expression::ImageLoad {
2175 image,
2176 level: Some(level_expr),
2177 ..
2178 } = ctx.expressions[handle]
2179 {
2180 if let TypeInner::Image {
2181 class: crate::ImageClass::Sampled { .. },
2182 ..
2183 } = *ctx.resolve_type(image, &self.module.types)
2184 {
2185 if let proc::BoundsCheckPolicy::Restrict = self.policies.image_load {
2186 write!(self.out, "{level}")?;
2187 self.write_clamped_lod(ctx, handle, image, level_expr)?
2188 }
2189 }
2190 }
2191
2192 if let Some(name) = expr_name {
2193 write!(self.out, "{level}")?;
2194 self.write_named_expr(handle, name, handle, ctx)?;
2195 }
2196 }
2197 }
2198 // Blocks are simple we just need to write the block statements between braces
2199 // We could also just print the statements but this is more readable and maps more
2200 // closely to the IR
2201 Statement::Block(ref block) => {
2202 write!(self.out, "{level}")?;
2203 writeln!(self.out, "{{")?;
2204 for sta in block.iter() {
2205 // Increase the indentation to help with readability
2206 self.write_stmt(sta, ctx, level.next())?
2207 }
2208 writeln!(self.out, "{level}}}")?
2209 }
2210 // Ifs are written as in C:
2211 // ```
2212 // if(condition) {
2213 // accept
2214 // } else {
2215 // reject
2216 // }
2217 // ```
2218 Statement::If {
2219 condition,
2220 ref accept,
2221 ref reject,
2222 } => {
2223 write!(self.out, "{level}")?;
2224 write!(self.out, "if (")?;
2225 self.write_expr(condition, ctx)?;
2226 writeln!(self.out, ") {{")?;
2227
2228 for sta in accept {
2229 // Increase indentation to help with readability
2230 self.write_stmt(sta, ctx, level.next())?;
2231 }
2232
2233 // If there are no statements in the reject block we skip writing it
2234 // This is only for readability
2235 if !reject.is_empty() {
2236 writeln!(self.out, "{level}}} else {{")?;
2237
2238 for sta in reject {
2239 // Increase indentation to help with readability
2240 self.write_stmt(sta, ctx, level.next())?;
2241 }
2242 }
2243
2244 writeln!(self.out, "{level}}}")?
2245 }
2246 // Switch are written as in C:
2247 // ```
2248 // switch (selector) {
2249 // // Fallthrough
2250 // case label:
2251 // block
2252 // // Non fallthrough
2253 // case label:
2254 // block
2255 // break;
2256 // default:
2257 // block
2258 // }
2259 // ```
2260 // Where the `default` case happens isn't important but we put it last
2261 // so that we don't need to print a `break` for it
2262 Statement::Switch {
2263 selector,
2264 ref cases,
2265 } => {
2266 let l2 = level.next();
2267 // Some GLSL consumers may not handle switches with a single
2268 // body correctly: See wgpu#4514. Write such switch statements
2269 // as a `do {} while(false);` loop instead.
2270 //
2271 // Since doing so may inadvertently capture `continue`
2272 // statements in the switch body, we must apply continue
2273 // forwarding. See the `naga::back::continue_forward` module
2274 // docs for details.
2275 let one_body = cases
2276 .iter()
2277 .rev()
2278 .skip(1)
2279 .all(|case| case.fall_through && case.body.is_empty());
2280 if one_body {
2281 // Unlike HLSL, in GLSL `continue_ctx` only needs to know
2282 // about [`Switch`] statements that are being rendered as
2283 // `do-while` loops.
2284 if let Some(variable) = self.continue_ctx.enter_switch(&mut self.namer) {
2285 writeln!(self.out, "{level}bool {variable} = false;",)?;
2286 };
2287 writeln!(self.out, "{level}do {{")?;
2288 // Note: Expressions have no side-effects so we don't need to emit selector expression.
2289
2290 // Body
2291 if let Some(case) = cases.last() {
2292 for sta in case.body.iter() {
2293 self.write_stmt(sta, ctx, l2)?;
2294 }
2295 }
2296 // End do-while
2297 writeln!(self.out, "{level}}} while(false);")?;
2298
2299 // Handle any forwarded continue statements.
2300 use back::continue_forward::ExitControlFlow;
2301 let op = match self.continue_ctx.exit_switch() {
2302 ExitControlFlow::None => None,
2303 ExitControlFlow::Continue { variable } => Some(("continue", variable)),
2304 ExitControlFlow::Break { variable } => Some(("break", variable)),
2305 };
2306 if let Some((control_flow, variable)) = op {
2307 writeln!(self.out, "{level}if ({variable}) {{")?;
2308 writeln!(self.out, "{l2}{control_flow};")?;
2309 writeln!(self.out, "{level}}}")?;
2310 }
2311 } else {
2312 // Start the switch
2313 write!(self.out, "{level}")?;
2314 write!(self.out, "switch(")?;
2315 self.write_expr(selector, ctx)?;
2316 writeln!(self.out, ") {{")?;
2317
2318 // Write all cases
2319 for case in cases {
2320 match case.value {
2321 crate::SwitchValue::I32(value) => {
2322 write!(self.out, "{l2}case {value}:")?
2323 }
2324 crate::SwitchValue::U32(value) => {
2325 write!(self.out, "{l2}case {value}u:")?
2326 }
2327 crate::SwitchValue::Default => write!(self.out, "{l2}default:")?,
2328 }
2329
2330 let write_block_braces = !(case.fall_through && case.body.is_empty());
2331 if write_block_braces {
2332 writeln!(self.out, " {{")?;
2333 } else {
2334 writeln!(self.out)?;
2335 }
2336
2337 for sta in case.body.iter() {
2338 self.write_stmt(sta, ctx, l2.next())?;
2339 }
2340
2341 if !case.fall_through && case.body.last().is_none_or(|s| !s.is_terminator())
2342 {
2343 writeln!(self.out, "{}break;", l2.next())?;
2344 }
2345
2346 if write_block_braces {
2347 writeln!(self.out, "{l2}}}")?;
2348 }
2349 }
2350
2351 writeln!(self.out, "{level}}}")?
2352 }
2353 }
2354 // Loops in naga IR are based on wgsl loops, glsl can emulate the behaviour by using a
2355 // while true loop and appending the continuing block to the body resulting on:
2356 // ```
2357 // bool loop_init = true;
2358 // while(true) {
2359 // if (!loop_init) { <continuing> }
2360 // loop_init = false;
2361 // <body>
2362 // }
2363 // ```
2364 Statement::Loop {
2365 ref body,
2366 ref continuing,
2367 break_if,
2368 } => {
2369 self.continue_ctx.enter_loop();
2370 if !continuing.is_empty() || break_if.is_some() {
2371 let gate_name = self.namer.call("loop_init");
2372 writeln!(self.out, "{level}bool {gate_name} = true;")?;
2373 writeln!(self.out, "{level}while(true) {{")?;
2374 let l2 = level.next();
2375 let l3 = l2.next();
2376 writeln!(self.out, "{l2}if (!{gate_name}) {{")?;
2377 for sta in continuing {
2378 self.write_stmt(sta, ctx, l3)?;
2379 }
2380 if let Some(condition) = break_if {
2381 write!(self.out, "{l3}if (")?;
2382 self.write_expr(condition, ctx)?;
2383 writeln!(self.out, ") {{")?;
2384 writeln!(self.out, "{}break;", l3.next())?;
2385 writeln!(self.out, "{l3}}}")?;
2386 }
2387 writeln!(self.out, "{l2}}}")?;
2388 writeln!(self.out, "{}{} = false;", level.next(), gate_name)?;
2389 } else {
2390 writeln!(self.out, "{level}while(true) {{")?;
2391 }
2392 for sta in body {
2393 self.write_stmt(sta, ctx, level.next())?;
2394 }
2395 writeln!(self.out, "{level}}}")?;
2396 self.continue_ctx.exit_loop();
2397 }
2398 // Break, continue and return as written as in C
2399 // `break;`
2400 Statement::Break => {
2401 write!(self.out, "{level}")?;
2402 writeln!(self.out, "break;")?
2403 }
2404 // `continue;`
2405 Statement::Continue => {
2406 // Sometimes we must render a `Continue` statement as a `break`.
2407 // See the docs for the `back::continue_forward` module.
2408 if let Some(variable) = self.continue_ctx.continue_encountered() {
2409 writeln!(self.out, "{level}{variable} = true;",)?;
2410 writeln!(self.out, "{level}break;")?
2411 } else {
2412 writeln!(self.out, "{level}continue;")?
2413 }
2414 }
2415 // `return expr;`, `expr` is optional
2416 Statement::Return { value } => {
2417 write!(self.out, "{level}")?;
2418 match ctx.ty {
2419 back::FunctionType::Function(_) => {
2420 write!(self.out, "return")?;
2421 // Write the expression to be returned if needed
2422 if let Some(expr) = value {
2423 write!(self.out, " ")?;
2424 self.write_expr(expr, ctx)?;
2425 }
2426 writeln!(self.out, ";")?;
2427 }
2428 back::FunctionType::EntryPoint(ep_index) => {
2429 let mut has_point_size = false;
2430 let ep = &self.module.entry_points[ep_index as usize];
2431 if let Some(ref result) = ep.function.result {
2432 let value = value.unwrap();
2433 match self.module.types[result.ty].inner {
2434 TypeInner::Struct { ref members, .. } => {
2435 let temp_struct_name = match ctx.expressions[value] {
2436 crate::Expression::Compose { .. } => {
2437 let return_struct = "_tmp_return";
2438 write!(
2439 self.out,
2440 "{} {} = ",
2441 &self.names[&NameKey::Type(result.ty)],
2442 return_struct
2443 )?;
2444 self.write_expr(value, ctx)?;
2445 writeln!(self.out, ";")?;
2446 write!(self.out, "{level}")?;
2447 Some(return_struct)
2448 }
2449 _ => None,
2450 };
2451
2452 for (index, member) in members.iter().enumerate() {
2453 if let Some(crate::Binding::BuiltIn(
2454 crate::BuiltIn::PointSize,
2455 )) = member.binding
2456 {
2457 has_point_size = true;
2458 }
2459
2460 let varying_name = VaryingName {
2461 binding: member.binding.as_ref().unwrap(),
2462 stage: ep.stage,
2463 options: VaryingOptions::from_writer_options(
2464 self.options,
2465 true,
2466 ),
2467 };
2468 write!(self.out, "{varying_name} = ")?;
2469
2470 if let Some(struct_name) = temp_struct_name {
2471 write!(self.out, "{struct_name}")?;
2472 } else {
2473 self.write_expr(value, ctx)?;
2474 }
2475
2476 // Write field name
2477 writeln!(
2478 self.out,
2479 ".{};",
2480 &self.names
2481 [&NameKey::StructMember(result.ty, index as u32)]
2482 )?;
2483 write!(self.out, "{level}")?;
2484 }
2485 }
2486 _ => {
2487 let name = VaryingName {
2488 binding: result.binding.as_ref().unwrap(),
2489 stage: ep.stage,
2490 options: VaryingOptions::from_writer_options(
2491 self.options,
2492 true,
2493 ),
2494 };
2495 write!(self.out, "{name} = ")?;
2496 self.write_expr(value, ctx)?;
2497 writeln!(self.out, ";")?;
2498 write!(self.out, "{level}")?;
2499 }
2500 }
2501 }
2502
2503 let is_vertex_stage = self.module.entry_points[ep_index as usize].stage
2504 == ShaderStage::Vertex;
2505 if is_vertex_stage
2506 && self
2507 .options
2508 .writer_flags
2509 .contains(WriterFlags::ADJUST_COORDINATE_SPACE)
2510 {
2511 writeln!(
2512 self.out,
2513 "gl_Position.yz = vec2(-gl_Position.y, gl_Position.z * 2.0 - gl_Position.w);",
2514 )?;
2515 write!(self.out, "{level}")?;
2516 }
2517
2518 if is_vertex_stage
2519 && self
2520 .options
2521 .writer_flags
2522 .contains(WriterFlags::FORCE_POINT_SIZE)
2523 && !has_point_size
2524 {
2525 writeln!(self.out, "gl_PointSize = 1.0;")?;
2526 write!(self.out, "{level}")?;
2527 }
2528 writeln!(self.out, "return;")?;
2529 }
2530 }
2531 }
2532 // This is one of the places were glsl adds to the syntax of C in this case the discard
2533 // keyword which ceases all further processing in a fragment shader, it's called OpKill
2534 // in spir-v that's why it's called `Statement::Kill`
2535 Statement::Kill => writeln!(self.out, "{level}discard;")?,
2536 Statement::ControlBarrier(flags) => {
2537 self.write_control_barrier(flags, level)?;
2538 }
2539 Statement::MemoryBarrier(flags) => {
2540 self.write_memory_barrier(flags, level)?;
2541 }
2542 // Stores in glsl are just variable assignments written as `pointer = value;`
2543 Statement::Store { pointer, value } => {
2544 write!(self.out, "{level}")?;
2545 self.write_expr(pointer, ctx)?;
2546 write!(self.out, " = ")?;
2547 self.write_expr(value, ctx)?;
2548 writeln!(self.out, ";")?
2549 }
2550 Statement::WorkGroupUniformLoad { pointer, result } => {
2551 // GLSL doesn't have pointers, which means that this backend needs to ensure that
2552 // the actual "loading" is happening between the two barriers.
2553 // This is done in `Emit` by never emitting a variable name for pointer variables
2554 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
2555
2556 let result_name = Baked(result).to_string();
2557 write!(self.out, "{level}")?;
2558 // Expressions cannot have side effects, so just writing the expression here is fine.
2559 self.write_named_expr(pointer, result_name, result, ctx)?;
2560
2561 self.write_control_barrier(crate::Barrier::WORK_GROUP, level)?;
2562 }
2563 // Stores a value into an image.
2564 Statement::ImageStore {
2565 image,
2566 coordinate,
2567 array_index,
2568 value,
2569 } => {
2570 write!(self.out, "{level}")?;
2571 self.write_image_store(ctx, image, coordinate, array_index, value)?
2572 }
2573 // A `Call` is written `name(arguments)` where `arguments` is a comma separated expressions list
2574 Statement::Call {
2575 function,
2576 ref arguments,
2577 result,
2578 } => {
2579 write!(self.out, "{level}")?;
2580 if let Some(expr) = result {
2581 let name = Baked(expr).to_string();
2582 let result = self.module.functions[function].result.as_ref().unwrap();
2583 self.write_type(result.ty)?;
2584 write!(self.out, " {name}")?;
2585 if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner
2586 {
2587 self.write_array_size(base, size)?
2588 }
2589 write!(self.out, " = ")?;
2590 self.named_expressions.insert(expr, name);
2591 }
2592 write!(self.out, "{}(", &self.names[&NameKey::Function(function)])?;
2593 let arguments: Vec<_> = arguments
2594 .iter()
2595 .enumerate()
2596 .filter_map(|(i, arg)| {
2597 let arg_ty = self.module.functions[function].arguments[i].ty;
2598 match self.module.types[arg_ty].inner {
2599 TypeInner::Sampler { .. } => None,
2600 _ => Some(*arg),
2601 }
2602 })
2603 .collect();
2604 self.write_slice(&arguments, |this, _, arg| this.write_expr(*arg, ctx))?;
2605 writeln!(self.out, ");")?
2606 }
2607 Statement::Atomic {
2608 pointer,
2609 ref fun,
2610 value,
2611 result,
2612 } => {
2613 write!(self.out, "{level}")?;
2614
2615 match *fun {
2616 crate::AtomicFunction::Exchange {
2617 compare: Some(compare_expr),
2618 } => {
2619 let result_handle = result.expect("CompareExchange must have a result");
2620 let res_name = Baked(result_handle).to_string();
2621 self.write_type(ctx.info[result_handle].ty.handle().unwrap())?;
2622 write!(self.out, " {res_name};")?;
2623 write!(self.out, " {res_name}.old_value = atomicCompSwap(")?;
2624 self.write_expr(pointer, ctx)?;
2625 write!(self.out, ", ")?;
2626 self.write_expr(compare_expr, ctx)?;
2627 write!(self.out, ", ")?;
2628 self.write_expr(value, ctx)?;
2629 writeln!(self.out, ");")?;
2630
2631 write!(
2632 self.out,
2633 "{level}{res_name}.exchanged = ({res_name}.old_value == "
2634 )?;
2635 self.write_expr(compare_expr, ctx)?;
2636 writeln!(self.out, ");")?;
2637 self.named_expressions.insert(result_handle, res_name);
2638 }
2639 _ => {
2640 if let Some(result) = result {
2641 let res_name = Baked(result).to_string();
2642 self.write_type(ctx.info[result].ty.handle().unwrap())?;
2643 write!(self.out, " {res_name} = ")?;
2644 self.named_expressions.insert(result, res_name);
2645 }
2646 let fun_str = fun.to_glsl();
2647 write!(self.out, "atomic{fun_str}(")?;
2648 self.write_expr(pointer, ctx)?;
2649 write!(self.out, ", ")?;
2650 if let crate::AtomicFunction::Subtract = *fun {
2651 // Emulate `atomicSub` with `atomicAdd` by negating the value.
2652 write!(self.out, "-")?;
2653 }
2654 self.write_expr(value, ctx)?;
2655 writeln!(self.out, ");")?;
2656 }
2657 }
2658 }
2659 // Stores a value into an image.
2660 Statement::ImageAtomic {
2661 image,
2662 coordinate,
2663 array_index,
2664 fun,
2665 value,
2666 } => {
2667 write!(self.out, "{level}")?;
2668 self.write_image_atomic(ctx, image, coordinate, array_index, fun, value)?
2669 }
2670 Statement::RayQuery { .. } => unreachable!(),
2671 Statement::SubgroupBallot { result, predicate } => {
2672 write!(self.out, "{level}")?;
2673 let res_name = Baked(result).to_string();
2674 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2675 self.write_value_type(res_ty)?;
2676 write!(self.out, " {res_name} = ")?;
2677 self.named_expressions.insert(result, res_name);
2678
2679 write!(self.out, "subgroupBallot(")?;
2680 match predicate {
2681 Some(predicate) => self.write_expr(predicate, ctx)?,
2682 None => write!(self.out, "true")?,
2683 }
2684 writeln!(self.out, ");")?;
2685 }
2686 Statement::SubgroupCollectiveOperation {
2687 op,
2688 collective_op,
2689 argument,
2690 result,
2691 } => {
2692 write!(self.out, "{level}")?;
2693 let res_name = Baked(result).to_string();
2694 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2695 self.write_value_type(res_ty)?;
2696 write!(self.out, " {res_name} = ")?;
2697 self.named_expressions.insert(result, res_name);
2698
2699 match (collective_op, op) {
2700 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::All) => {
2701 write!(self.out, "subgroupAll(")?
2702 }
2703 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Any) => {
2704 write!(self.out, "subgroupAny(")?
2705 }
2706 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Add) => {
2707 write!(self.out, "subgroupAdd(")?
2708 }
2709 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Mul) => {
2710 write!(self.out, "subgroupMul(")?
2711 }
2712 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Max) => {
2713 write!(self.out, "subgroupMax(")?
2714 }
2715 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Min) => {
2716 write!(self.out, "subgroupMin(")?
2717 }
2718 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::And) => {
2719 write!(self.out, "subgroupAnd(")?
2720 }
2721 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Or) => {
2722 write!(self.out, "subgroupOr(")?
2723 }
2724 (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Xor) => {
2725 write!(self.out, "subgroupXor(")?
2726 }
2727 (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Add) => {
2728 write!(self.out, "subgroupExclusiveAdd(")?
2729 }
2730 (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Mul) => {
2731 write!(self.out, "subgroupExclusiveMul(")?
2732 }
2733 (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Add) => {
2734 write!(self.out, "subgroupInclusiveAdd(")?
2735 }
2736 (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Mul) => {
2737 write!(self.out, "subgroupInclusiveMul(")?
2738 }
2739 _ => unimplemented!(),
2740 }
2741 self.write_expr(argument, ctx)?;
2742 writeln!(self.out, ");")?;
2743 }
2744 Statement::SubgroupGather {
2745 mode,
2746 argument,
2747 result,
2748 } => {
2749 write!(self.out, "{level}")?;
2750 let res_name = Baked(result).to_string();
2751 let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
2752 self.write_value_type(res_ty)?;
2753 write!(self.out, " {res_name} = ")?;
2754 self.named_expressions.insert(result, res_name);
2755
2756 match mode {
2757 crate::GatherMode::BroadcastFirst => {
2758 write!(self.out, "subgroupBroadcastFirst(")?;
2759 }
2760 crate::GatherMode::Broadcast(_) => {
2761 write!(self.out, "subgroupBroadcast(")?;
2762 }
2763 crate::GatherMode::Shuffle(_) => {
2764 write!(self.out, "subgroupShuffle(")?;
2765 }
2766 crate::GatherMode::ShuffleDown(_) => {
2767 write!(self.out, "subgroupShuffleDown(")?;
2768 }
2769 crate::GatherMode::ShuffleUp(_) => {
2770 write!(self.out, "subgroupShuffleUp(")?;
2771 }
2772 crate::GatherMode::ShuffleXor(_) => {
2773 write!(self.out, "subgroupShuffleXor(")?;
2774 }
2775 crate::GatherMode::QuadBroadcast(_) => {
2776 write!(self.out, "subgroupQuadBroadcast(")?;
2777 }
2778 crate::GatherMode::QuadSwap(direction) => match direction {
2779 crate::Direction::X => {
2780 write!(self.out, "subgroupQuadSwapHorizontal(")?;
2781 }
2782 crate::Direction::Y => {
2783 write!(self.out, "subgroupQuadSwapVertical(")?;
2784 }
2785 crate::Direction::Diagonal => {
2786 write!(self.out, "subgroupQuadSwapDiagonal(")?;
2787 }
2788 },
2789 }
2790 self.write_expr(argument, ctx)?;
2791 match mode {
2792 crate::GatherMode::BroadcastFirst => {}
2793 crate::GatherMode::Broadcast(index)
2794 | crate::GatherMode::Shuffle(index)
2795 | crate::GatherMode::ShuffleDown(index)
2796 | crate::GatherMode::ShuffleUp(index)
2797 | crate::GatherMode::ShuffleXor(index)
2798 | crate::GatherMode::QuadBroadcast(index) => {
2799 write!(self.out, ", ")?;
2800 self.write_expr(index, ctx)?;
2801 }
2802 crate::GatherMode::QuadSwap(_) => {}
2803 }
2804 writeln!(self.out, ");")?;
2805 }
2806 }
2807
2808 Ok(())
2809 }
2810
2811 /// Write a const expression.
2812 ///
2813 /// Write `expr`, a handle to an [`Expression`] in the current [`Module`]'s
2814 /// constant expression arena, as GLSL expression.
2815 ///
2816 /// # Notes
2817 /// Adds no newlines or leading/trailing whitespace
2818 ///
2819 /// [`Expression`]: crate::Expression
2820 /// [`Module`]: crate::Module
2821 fn write_const_expr(
2822 &mut self,
2823 expr: Handle<crate::Expression>,
2824 arena: &crate::Arena<crate::Expression>,
2825 ) -> BackendResult {
2826 self.write_possibly_const_expr(
2827 expr,
2828 arena,
2829 |expr| &self.info[expr],
2830 |writer, expr| writer.write_const_expr(expr, arena),
2831 )
2832 }
2833
2834 /// Write [`Expression`] variants that can occur in both runtime and const expressions.
2835 ///
2836 /// Write `expr`, a handle to an [`Expression`] in the arena `expressions`,
2837 /// as as GLSL expression. This must be one of the [`Expression`] variants
2838 /// that is allowed to occur in constant expressions.
2839 ///
2840 /// Use `write_expression` to write subexpressions.
2841 ///
2842 /// This is the common code for `write_expr`, which handles arbitrary
2843 /// runtime expressions, and `write_const_expr`, which only handles
2844 /// const-expressions. Each of those callers passes itself (essentially) as
2845 /// the `write_expression` callback, so that subexpressions are restricted
2846 /// to the appropriate variants.
2847 ///
2848 /// # Notes
2849 /// Adds no newlines or leading/trailing whitespace
2850 ///
2851 /// [`Expression`]: crate::Expression
2852 fn write_possibly_const_expr<'w, I, E>(
2853 &'w mut self,
2854 expr: Handle<crate::Expression>,
2855 expressions: &crate::Arena<crate::Expression>,
2856 info: I,
2857 write_expression: E,
2858 ) -> BackendResult
2859 where
2860 I: Fn(Handle<crate::Expression>) -> &'w proc::TypeResolution,
2861 E: Fn(&mut Self, Handle<crate::Expression>) -> BackendResult,
2862 {
2863 use crate::Expression;
2864
2865 match expressions[expr] {
2866 Expression::Literal(literal) => {
2867 match literal {
2868 // Floats are written using `Debug` instead of `Display` because it always appends the
2869 // decimal part even it's zero which is needed for a valid glsl float constant
2870 crate::Literal::F64(value) => write!(self.out, "{value:?}LF")?,
2871 crate::Literal::F32(value) => write!(self.out, "{value:?}")?,
2872 crate::Literal::F16(_) => {
2873 return Err(Error::Custom("GLSL has no 16-bit float type".into()));
2874 }
2875 // Unsigned integers need a `u` at the end
2876 //
2877 // While `core` doesn't necessarily need it, it's allowed and since `es` needs it we
2878 // always write it as the extra branch wouldn't have any benefit in readability
2879 crate::Literal::U32(value) => write!(self.out, "{value}u")?,
2880 crate::Literal::I32(value) => write!(self.out, "{value}")?,
2881 crate::Literal::Bool(value) => write!(self.out, "{value}")?,
2882 crate::Literal::I64(_) => {
2883 return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
2884 }
2885 crate::Literal::U64(_) => {
2886 return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
2887 }
2888 crate::Literal::AbstractInt(_) | crate::Literal::AbstractFloat(_) => {
2889 return Err(Error::Custom(
2890 "Abstract types should not appear in IR presented to backends".into(),
2891 ));
2892 }
2893 }
2894 }
2895 Expression::Constant(handle) => {
2896 let constant = &self.module.constants[handle];
2897 if constant.name.is_some() {
2898 write!(self.out, "{}", self.names[&NameKey::Constant(handle)])?;
2899 } else {
2900 self.write_const_expr(constant.init, &self.module.global_expressions)?;
2901 }
2902 }
2903 Expression::ZeroValue(ty) => {
2904 self.write_zero_init_value(ty)?;
2905 }
2906 Expression::Compose { ty, ref components } => {
2907 self.write_type(ty)?;
2908
2909 if let TypeInner::Array { base, size, .. } = self.module.types[ty].inner {
2910 self.write_array_size(base, size)?;
2911 }
2912
2913 write!(self.out, "(")?;
2914 for (index, component) in components.iter().enumerate() {
2915 if index != 0 {
2916 write!(self.out, ", ")?;
2917 }
2918 write_expression(self, *component)?;
2919 }
2920 write!(self.out, ")")?
2921 }
2922 // `Splat` needs to actually write down a vector, it's not always inferred in GLSL.
2923 Expression::Splat { size: _, value } => {
2924 let resolved = info(expr).inner_with(&self.module.types);
2925 self.write_value_type(resolved)?;
2926 write!(self.out, "(")?;
2927 write_expression(self, value)?;
2928 write!(self.out, ")")?
2929 }
2930 _ => {
2931 return Err(Error::Override);
2932 }
2933 }
2934
2935 Ok(())
2936 }
2937
2938 /// Helper method to write expressions
2939 ///
2940 /// # Notes
2941 /// Doesn't add any newlines or leading/trailing spaces
2942 fn write_expr(
2943 &mut self,
2944 expr: Handle<crate::Expression>,
2945 ctx: &back::FunctionCtx,
2946 ) -> BackendResult {
2947 use crate::Expression;
2948
2949 if let Some(name) = self.named_expressions.get(&expr) {
2950 write!(self.out, "{name}")?;
2951 return Ok(());
2952 }
2953
2954 match ctx.expressions[expr] {
2955 Expression::Literal(_)
2956 | Expression::Constant(_)
2957 | Expression::ZeroValue(_)
2958 | Expression::Compose { .. }
2959 | Expression::Splat { .. } => {
2960 self.write_possibly_const_expr(
2961 expr,
2962 ctx.expressions,
2963 |expr| &ctx.info[expr].ty,
2964 |writer, expr| writer.write_expr(expr, ctx),
2965 )?;
2966 }
2967 Expression::Override(_) => return Err(Error::Override),
2968 // `Access` is applied to arrays, vectors and matrices and is written as indexing
2969 Expression::Access { base, index } => {
2970 self.write_expr(base, ctx)?;
2971 write!(self.out, "[")?;
2972 self.write_expr(index, ctx)?;
2973 write!(self.out, "]")?
2974 }
2975 // `AccessIndex` is the same as `Access` except that the index is a constant and it can
2976 // be applied to structs, in this case we need to find the name of the field at that
2977 // index and write `base.field_name`
2978 Expression::AccessIndex { base, index } => {
2979 self.write_expr(base, ctx)?;
2980
2981 let base_ty_res = &ctx.info[base].ty;
2982 let mut resolved = base_ty_res.inner_with(&self.module.types);
2983 let base_ty_handle = match *resolved {
2984 TypeInner::Pointer { base, space: _ } => {
2985 resolved = &self.module.types[base].inner;
2986 Some(base)
2987 }
2988 _ => base_ty_res.handle(),
2989 };
2990
2991 match *resolved {
2992 TypeInner::Vector { .. } => {
2993 // Write vector access as a swizzle
2994 write!(self.out, ".{}", back::COMPONENTS[index as usize])?
2995 }
2996 TypeInner::Matrix { .. }
2997 | TypeInner::Array { .. }
2998 | TypeInner::ValuePointer { .. } => write!(self.out, "[{index}]")?,
2999 TypeInner::Struct { .. } => {
3000 // This will never panic in case the type is a `Struct`, this is not true
3001 // for other types so we can only check while inside this match arm
3002 let ty = base_ty_handle.unwrap();
3003
3004 write!(
3005 self.out,
3006 ".{}",
3007 &self.names[&NameKey::StructMember(ty, index)]
3008 )?
3009 }
3010 ref other => return Err(Error::Custom(format!("Cannot index {other:?}"))),
3011 }
3012 }
3013 // `Swizzle` adds a few letters behind the dot.
3014 Expression::Swizzle {
3015 size,
3016 vector,
3017 pattern,
3018 } => {
3019 self.write_expr(vector, ctx)?;
3020 write!(self.out, ".")?;
3021 for &sc in pattern[..size as usize].iter() {
3022 self.out.write_char(back::COMPONENTS[sc as usize])?;
3023 }
3024 }
3025 // Function arguments are written as the argument name
3026 Expression::FunctionArgument(pos) => {
3027 write!(self.out, "{}", &self.names[&ctx.argument_key(pos)])?
3028 }
3029 // Global variables need some special work for their name but
3030 // `get_global_name` does the work for us
3031 Expression::GlobalVariable(handle) => {
3032 let global = &self.module.global_variables[handle];
3033 self.write_global_name(handle, global)?
3034 }
3035 // A local is written as it's name
3036 Expression::LocalVariable(handle) => {
3037 write!(self.out, "{}", self.names[&ctx.name_key(handle)])?
3038 }
3039 // glsl has no pointers so there's no load operation, just write the pointer expression
3040 Expression::Load { pointer } => self.write_expr(pointer, ctx)?,
3041 // `ImageSample` is a bit complicated compared to the rest of the IR.
3042 //
3043 // First there are three variations depending whether the sample level is explicitly set,
3044 // if it's automatic or it it's bias:
3045 // `texture(image, coordinate)` - Automatic sample level
3046 // `texture(image, coordinate, bias)` - Bias sample level
3047 // `textureLod(image, coordinate, level)` - Zero or Exact sample level
3048 //
3049 // Furthermore if `depth_ref` is some we need to append it to the coordinate vector
3050 Expression::ImageSample {
3051 image,
3052 sampler: _, //TODO?
3053 gather,
3054 coordinate,
3055 array_index,
3056 offset,
3057 level,
3058 depth_ref,
3059 clamp_to_edge: _,
3060 } => {
3061 let (dim, class, arrayed) = match *ctx.resolve_type(image, &self.module.types) {
3062 TypeInner::Image {
3063 dim,
3064 class,
3065 arrayed,
3066 ..
3067 } => (dim, class, arrayed),
3068 _ => unreachable!(),
3069 };
3070 let mut err = None;
3071 if dim == crate::ImageDimension::Cube {
3072 if offset.is_some() {
3073 err = Some("gsamplerCube[Array][Shadow] doesn't support texture sampling with offsets");
3074 }
3075 if arrayed
3076 && matches!(class, crate::ImageClass::Depth { .. })
3077 && matches!(level, crate::SampleLevel::Gradient { .. })
3078 {
3079 err = Some("samplerCubeArrayShadow don't support textureGrad");
3080 }
3081 }
3082 if gather.is_some() && level != crate::SampleLevel::Zero {
3083 err = Some("textureGather doesn't support LOD parameters");
3084 }
3085 if let Some(err) = err {
3086 return Err(Error::Custom(String::from(err)));
3087 }
3088
3089 // `textureLod[Offset]` on `sampler2DArrayShadow` and `samplerCubeShadow` does not exist in GLSL,
3090 // unless `GL_EXT_texture_shadow_lod` is present.
3091 // But if the target LOD is zero, we can emulate that by using `textureGrad[Offset]` with a constant gradient of 0.
3092 let workaround_lod_with_grad = ((dim == crate::ImageDimension::Cube && !arrayed)
3093 || (dim == crate::ImageDimension::D2 && arrayed))
3094 && level == crate::SampleLevel::Zero
3095 && matches!(class, crate::ImageClass::Depth { .. })
3096 && !self.features.contains(Features::TEXTURE_SHADOW_LOD);
3097
3098 // Write the function to be used depending on the sample level
3099 let fun_name = match level {
3100 crate::SampleLevel::Zero if gather.is_some() => "textureGather",
3101 crate::SampleLevel::Zero if workaround_lod_with_grad => "textureGrad",
3102 crate::SampleLevel::Auto | crate::SampleLevel::Bias(_) => "texture",
3103 crate::SampleLevel::Zero | crate::SampleLevel::Exact(_) => "textureLod",
3104 crate::SampleLevel::Gradient { .. } => "textureGrad",
3105 };
3106 let offset_name = match offset {
3107 Some(_) => "Offset",
3108 None => "",
3109 };
3110
3111 write!(self.out, "{fun_name}{offset_name}(")?;
3112
3113 // Write the image that will be used
3114 self.write_expr(image, ctx)?;
3115 // The space here isn't required but it helps with readability
3116 write!(self.out, ", ")?;
3117
3118 // TODO: handle clamp_to_edge
3119 // https://github.com/gfx-rs/wgpu/issues/7791
3120
3121 // We need to get the coordinates vector size to later build a vector that's `size + 1`
3122 // if `depth_ref` is some, if it isn't a vector we panic as that's not a valid expression
3123 let mut coord_dim = match *ctx.resolve_type(coordinate, &self.module.types) {
3124 TypeInner::Vector { size, .. } => size as u8,
3125 TypeInner::Scalar { .. } => 1,
3126 _ => unreachable!(),
3127 };
3128
3129 if array_index.is_some() {
3130 coord_dim += 1;
3131 }
3132 let merge_depth_ref = depth_ref.is_some() && gather.is_none() && coord_dim < 4;
3133 if merge_depth_ref {
3134 coord_dim += 1;
3135 }
3136
3137 let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
3138 let is_vec = tex_1d_hack || coord_dim != 1;
3139 // Compose a new texture coordinates vector
3140 if is_vec {
3141 write!(self.out, "vec{}(", coord_dim + tex_1d_hack as u8)?;
3142 }
3143 self.write_expr(coordinate, ctx)?;
3144 if tex_1d_hack {
3145 write!(self.out, ", 0.0")?;
3146 }
3147 if let Some(expr) = array_index {
3148 write!(self.out, ", ")?;
3149 self.write_expr(expr, ctx)?;
3150 }
3151 if merge_depth_ref {
3152 write!(self.out, ", ")?;
3153 self.write_expr(depth_ref.unwrap(), ctx)?;
3154 }
3155 if is_vec {
3156 write!(self.out, ")")?;
3157 }
3158
3159 if let (Some(expr), false) = (depth_ref, merge_depth_ref) {
3160 write!(self.out, ", ")?;
3161 self.write_expr(expr, ctx)?;
3162 }
3163
3164 match level {
3165 // Auto needs no more arguments
3166 crate::SampleLevel::Auto => (),
3167 // Zero needs level set to 0
3168 crate::SampleLevel::Zero => {
3169 if workaround_lod_with_grad {
3170 let vec_dim = match dim {
3171 crate::ImageDimension::Cube => 3,
3172 _ => 2,
3173 };
3174 write!(self.out, ", vec{vec_dim}(0.0), vec{vec_dim}(0.0)")?;
3175 } else if gather.is_none() {
3176 write!(self.out, ", 0.0")?;
3177 }
3178 }
3179 // Exact and bias require another argument
3180 crate::SampleLevel::Exact(expr) => {
3181 write!(self.out, ", ")?;
3182 self.write_expr(expr, ctx)?;
3183 }
3184 crate::SampleLevel::Bias(_) => {
3185 // This needs to be done after the offset writing
3186 }
3187 crate::SampleLevel::Gradient { x, y } => {
3188 // If we are using sampler2D to replace sampler1D, we also
3189 // need to make sure to use vec2 gradients
3190 if tex_1d_hack {
3191 write!(self.out, ", vec2(")?;
3192 self.write_expr(x, ctx)?;
3193 write!(self.out, ", 0.0)")?;
3194 write!(self.out, ", vec2(")?;
3195 self.write_expr(y, ctx)?;
3196 write!(self.out, ", 0.0)")?;
3197 } else {
3198 write!(self.out, ", ")?;
3199 self.write_expr(x, ctx)?;
3200 write!(self.out, ", ")?;
3201 self.write_expr(y, ctx)?;
3202 }
3203 }
3204 }
3205
3206 if let Some(constant) = offset {
3207 write!(self.out, ", ")?;
3208 if tex_1d_hack {
3209 write!(self.out, "ivec2(")?;
3210 }
3211 self.write_const_expr(constant, ctx.expressions)?;
3212 if tex_1d_hack {
3213 write!(self.out, ", 0)")?;
3214 }
3215 }
3216
3217 // Bias is always the last argument
3218 if let crate::SampleLevel::Bias(expr) = level {
3219 write!(self.out, ", ")?;
3220 self.write_expr(expr, ctx)?;
3221 }
3222
3223 if let (Some(component), None) = (gather, depth_ref) {
3224 write!(self.out, ", {}", component as usize)?;
3225 }
3226
3227 // End the function
3228 write!(self.out, ")")?
3229 }
3230 Expression::ImageLoad {
3231 image,
3232 coordinate,
3233 array_index,
3234 sample,
3235 level,
3236 } => self.write_image_load(expr, ctx, image, coordinate, array_index, sample, level)?,
3237 // Query translates into one of the:
3238 // - textureSize/imageSize
3239 // - textureQueryLevels
3240 // - textureSamples/imageSamples
3241 Expression::ImageQuery { image, query } => {
3242 use crate::ImageClass;
3243
3244 // This will only panic if the module is invalid
3245 let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
3246 TypeInner::Image {
3247 dim,
3248 arrayed: _,
3249 class,
3250 } => (dim, class),
3251 _ => unreachable!(),
3252 };
3253 let components = match dim {
3254 crate::ImageDimension::D1 => 1,
3255 crate::ImageDimension::D2 => 2,
3256 crate::ImageDimension::D3 => 3,
3257 crate::ImageDimension::Cube => 2,
3258 };
3259
3260 if let crate::ImageQuery::Size { .. } = query {
3261 match components {
3262 1 => write!(self.out, "uint(")?,
3263 _ => write!(self.out, "uvec{components}(")?,
3264 }
3265 } else {
3266 write!(self.out, "uint(")?;
3267 }
3268
3269 match query {
3270 crate::ImageQuery::Size { level } => {
3271 match class {
3272 ImageClass::Sampled { multi, .. } | ImageClass::Depth { multi } => {
3273 write!(self.out, "textureSize(")?;
3274 self.write_expr(image, ctx)?;
3275 if let Some(expr) = level {
3276 let cast_to_int = matches!(
3277 *ctx.resolve_type(expr, &self.module.types),
3278 TypeInner::Scalar(crate::Scalar {
3279 kind: crate::ScalarKind::Uint,
3280 ..
3281 })
3282 );
3283
3284 write!(self.out, ", ")?;
3285
3286 if cast_to_int {
3287 write!(self.out, "int(")?;
3288 }
3289
3290 self.write_expr(expr, ctx)?;
3291
3292 if cast_to_int {
3293 write!(self.out, ")")?;
3294 }
3295 } else if !multi {
3296 // All textureSize calls requires an lod argument
3297 // except for multisampled samplers
3298 write!(self.out, ", 0")?;
3299 }
3300 }
3301 ImageClass::Storage { .. } => {
3302 write!(self.out, "imageSize(")?;
3303 self.write_expr(image, ctx)?;
3304 }
3305 }
3306 write!(self.out, ")")?;
3307 if components != 1 || self.options.version.is_es() {
3308 write!(self.out, ".{}", &"xyz"[..components])?;
3309 }
3310 }
3311 crate::ImageQuery::NumLevels => {
3312 write!(self.out, "textureQueryLevels(",)?;
3313 self.write_expr(image, ctx)?;
3314 write!(self.out, ")",)?;
3315 }
3316 crate::ImageQuery::NumLayers => {
3317 let fun_name = match class {
3318 ImageClass::Sampled { .. } | ImageClass::Depth { .. } => "textureSize",
3319 ImageClass::Storage { .. } => "imageSize",
3320 };
3321 write!(self.out, "{fun_name}(")?;
3322 self.write_expr(image, ctx)?;
3323 // All textureSize calls requires an lod argument
3324 // except for multisampled samplers
3325 if !class.is_multisampled() {
3326 write!(self.out, ", 0")?;
3327 }
3328 write!(self.out, ")")?;
3329 if components != 1 || self.options.version.is_es() {
3330 write!(self.out, ".{}", back::COMPONENTS[components])?;
3331 }
3332 }
3333 crate::ImageQuery::NumSamples => {
3334 let fun_name = match class {
3335 ImageClass::Sampled { .. } | ImageClass::Depth { .. } => {
3336 "textureSamples"
3337 }
3338 ImageClass::Storage { .. } => "imageSamples",
3339 };
3340 write!(self.out, "{fun_name}(")?;
3341 self.write_expr(image, ctx)?;
3342 write!(self.out, ")",)?;
3343 }
3344 }
3345
3346 write!(self.out, ")")?;
3347 }
3348 Expression::Unary { op, expr } => {
3349 let operator_or_fn = match op {
3350 crate::UnaryOperator::Negate => "-",
3351 crate::UnaryOperator::LogicalNot => {
3352 match *ctx.resolve_type(expr, &self.module.types) {
3353 TypeInner::Vector { .. } => "not",
3354 _ => "!",
3355 }
3356 }
3357 crate::UnaryOperator::BitwiseNot => "~",
3358 };
3359 write!(self.out, "{operator_or_fn}(")?;
3360
3361 self.write_expr(expr, ctx)?;
3362
3363 write!(self.out, ")")?
3364 }
3365 // `Binary` we just write `left op right`, except when dealing with
3366 // comparison operations on vectors as they are implemented with
3367 // builtin functions.
3368 // Once again we wrap everything in parentheses to avoid precedence issues
3369 Expression::Binary {
3370 mut op,
3371 left,
3372 right,
3373 } => {
3374 // Holds `Some(function_name)` if the binary operation is
3375 // implemented as a function call
3376 use crate::{BinaryOperator as Bo, ScalarKind as Sk, TypeInner as Ti};
3377
3378 let left_inner = ctx.resolve_type(left, &self.module.types);
3379 let right_inner = ctx.resolve_type(right, &self.module.types);
3380
3381 let function = match (left_inner, right_inner) {
3382 (&Ti::Vector { scalar, .. }, &Ti::Vector { .. }) => match op {
3383 Bo::Less
3384 | Bo::LessEqual
3385 | Bo::Greater
3386 | Bo::GreaterEqual
3387 | Bo::Equal
3388 | Bo::NotEqual => BinaryOperation::VectorCompare,
3389 Bo::Modulo if scalar.kind == Sk::Float => BinaryOperation::Modulo,
3390 Bo::And if scalar.kind == Sk::Bool => {
3391 op = crate::BinaryOperator::LogicalAnd;
3392 BinaryOperation::VectorComponentWise
3393 }
3394 Bo::InclusiveOr if scalar.kind == Sk::Bool => {
3395 op = crate::BinaryOperator::LogicalOr;
3396 BinaryOperation::VectorComponentWise
3397 }
3398 _ => BinaryOperation::Other,
3399 },
3400 _ => match (left_inner.scalar_kind(), right_inner.scalar_kind()) {
3401 (Some(Sk::Float), _) | (_, Some(Sk::Float)) => match op {
3402 Bo::Modulo => BinaryOperation::Modulo,
3403 _ => BinaryOperation::Other,
3404 },
3405 (Some(Sk::Bool), Some(Sk::Bool)) => match op {
3406 Bo::InclusiveOr => {
3407 op = crate::BinaryOperator::LogicalOr;
3408 BinaryOperation::Other
3409 }
3410 Bo::And => {
3411 op = crate::BinaryOperator::LogicalAnd;
3412 BinaryOperation::Other
3413 }
3414 _ => BinaryOperation::Other,
3415 },
3416 _ => BinaryOperation::Other,
3417 },
3418 };
3419
3420 match function {
3421 BinaryOperation::VectorCompare => {
3422 let op_str = match op {
3423 Bo::Less => "lessThan(",
3424 Bo::LessEqual => "lessThanEqual(",
3425 Bo::Greater => "greaterThan(",
3426 Bo::GreaterEqual => "greaterThanEqual(",
3427 Bo::Equal => "equal(",
3428 Bo::NotEqual => "notEqual(",
3429 _ => unreachable!(),
3430 };
3431 write!(self.out, "{op_str}")?;
3432 self.write_expr(left, ctx)?;
3433 write!(self.out, ", ")?;
3434 self.write_expr(right, ctx)?;
3435 write!(self.out, ")")?;
3436 }
3437 BinaryOperation::VectorComponentWise => {
3438 self.write_value_type(left_inner)?;
3439 write!(self.out, "(")?;
3440
3441 let size = match *left_inner {
3442 Ti::Vector { size, .. } => size,
3443 _ => unreachable!(),
3444 };
3445
3446 for i in 0..size as usize {
3447 if i != 0 {
3448 write!(self.out, ", ")?;
3449 }
3450
3451 self.write_expr(left, ctx)?;
3452 write!(self.out, ".{}", back::COMPONENTS[i])?;
3453
3454 write!(self.out, " {} ", back::binary_operation_str(op))?;
3455
3456 self.write_expr(right, ctx)?;
3457 write!(self.out, ".{}", back::COMPONENTS[i])?;
3458 }
3459
3460 write!(self.out, ")")?;
3461 }
3462 // TODO: handle undefined behavior of BinaryOperator::Modulo
3463 //
3464 // sint:
3465 // if right == 0 return 0
3466 // if left == min(type_of(left)) && right == -1 return 0
3467 // if sign(left) == -1 || sign(right) == -1 return result as defined by WGSL
3468 //
3469 // uint:
3470 // if right == 0 return 0
3471 //
3472 // float:
3473 // if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798
3474 BinaryOperation::Modulo => {
3475 write!(self.out, "(")?;
3476
3477 // write `e1 - e2 * trunc(e1 / e2)`
3478 self.write_expr(left, ctx)?;
3479 write!(self.out, " - ")?;
3480 self.write_expr(right, ctx)?;
3481 write!(self.out, " * ")?;
3482 write!(self.out, "trunc(")?;
3483 self.write_expr(left, ctx)?;
3484 write!(self.out, " / ")?;
3485 self.write_expr(right, ctx)?;
3486 write!(self.out, ")")?;
3487
3488 write!(self.out, ")")?;
3489 }
3490 BinaryOperation::Other => {
3491 write!(self.out, "(")?;
3492
3493 self.write_expr(left, ctx)?;
3494 write!(self.out, " {} ", back::binary_operation_str(op))?;
3495 self.write_expr(right, ctx)?;
3496
3497 write!(self.out, ")")?;
3498 }
3499 }
3500 }
3501 // `Select` is written as `condition ? accept : reject`
3502 // We wrap everything in parentheses to avoid precedence issues
3503 Expression::Select {
3504 condition,
3505 accept,
3506 reject,
3507 } => {
3508 let cond_ty = ctx.resolve_type(condition, &self.module.types);
3509 let vec_select = if let TypeInner::Vector { .. } = *cond_ty {
3510 true
3511 } else {
3512 false
3513 };
3514
3515 // TODO: Boolean mix on desktop required GL_EXT_shader_integer_mix
3516 if vec_select {
3517 // Glsl defines that for mix when the condition is a boolean the first element
3518 // is picked if condition is false and the second if condition is true
3519 write!(self.out, "mix(")?;
3520 self.write_expr(reject, ctx)?;
3521 write!(self.out, ", ")?;
3522 self.write_expr(accept, ctx)?;
3523 write!(self.out, ", ")?;
3524 self.write_expr(condition, ctx)?;
3525 } else {
3526 write!(self.out, "(")?;
3527 self.write_expr(condition, ctx)?;
3528 write!(self.out, " ? ")?;
3529 self.write_expr(accept, ctx)?;
3530 write!(self.out, " : ")?;
3531 self.write_expr(reject, ctx)?;
3532 }
3533
3534 write!(self.out, ")")?
3535 }
3536 // `Derivative` is a function call to a glsl provided function
3537 Expression::Derivative { axis, ctrl, expr } => {
3538 use crate::{DerivativeAxis as Axis, DerivativeControl as Ctrl};
3539 let fun_name = if self.options.version.supports_derivative_control() {
3540 match (axis, ctrl) {
3541 (Axis::X, Ctrl::Coarse) => "dFdxCoarse",
3542 (Axis::X, Ctrl::Fine) => "dFdxFine",
3543 (Axis::X, Ctrl::None) => "dFdx",
3544 (Axis::Y, Ctrl::Coarse) => "dFdyCoarse",
3545 (Axis::Y, Ctrl::Fine) => "dFdyFine",
3546 (Axis::Y, Ctrl::None) => "dFdy",
3547 (Axis::Width, Ctrl::Coarse) => "fwidthCoarse",
3548 (Axis::Width, Ctrl::Fine) => "fwidthFine",
3549 (Axis::Width, Ctrl::None) => "fwidth",
3550 }
3551 } else {
3552 match axis {
3553 Axis::X => "dFdx",
3554 Axis::Y => "dFdy",
3555 Axis::Width => "fwidth",
3556 }
3557 };
3558 write!(self.out, "{fun_name}(")?;
3559 self.write_expr(expr, ctx)?;
3560 write!(self.out, ")")?
3561 }
3562 // `Relational` is a normal function call to some glsl provided functions
3563 Expression::Relational { fun, argument } => {
3564 use crate::RelationalFunction as Rf;
3565
3566 let fun_name = match fun {
3567 Rf::IsInf => "isinf",
3568 Rf::IsNan => "isnan",
3569 Rf::All => "all",
3570 Rf::Any => "any",
3571 };
3572 write!(self.out, "{fun_name}(")?;
3573
3574 self.write_expr(argument, ctx)?;
3575
3576 write!(self.out, ")")?
3577 }
3578 Expression::Math {
3579 fun,
3580 arg,
3581 arg1,
3582 arg2,
3583 arg3,
3584 } => {
3585 use crate::MathFunction as Mf;
3586
3587 let fun_name = match fun {
3588 // comparison
3589 Mf::Abs => "abs",
3590 Mf::Min => "min",
3591 Mf::Max => "max",
3592 Mf::Clamp => {
3593 let scalar_kind = ctx
3594 .resolve_type(arg, &self.module.types)
3595 .scalar_kind()
3596 .unwrap();
3597 match scalar_kind {
3598 crate::ScalarKind::Float => "clamp",
3599 // Clamp is undefined if min > max. In practice this means it can use a median-of-three
3600 // instruction to determine the value. This is fine according to the WGSL spec for float
3601 // clamp, but integer clamp _must_ use min-max. As such we write out min/max.
3602 _ => {
3603 write!(self.out, "min(max(")?;
3604 self.write_expr(arg, ctx)?;
3605 write!(self.out, ", ")?;
3606 self.write_expr(arg1.unwrap(), ctx)?;
3607 write!(self.out, "), ")?;
3608 self.write_expr(arg2.unwrap(), ctx)?;
3609 write!(self.out, ")")?;
3610
3611 return Ok(());
3612 }
3613 }
3614 }
3615 Mf::Saturate => {
3616 write!(self.out, "clamp(")?;
3617
3618 self.write_expr(arg, ctx)?;
3619
3620 match *ctx.resolve_type(arg, &self.module.types) {
3621 TypeInner::Vector { size, .. } => write!(
3622 self.out,
3623 ", vec{}(0.0), vec{0}(1.0)",
3624 common::vector_size_str(size)
3625 )?,
3626 _ => write!(self.out, ", 0.0, 1.0")?,
3627 }
3628
3629 write!(self.out, ")")?;
3630
3631 return Ok(());
3632 }
3633 // trigonometry
3634 Mf::Cos => "cos",
3635 Mf::Cosh => "cosh",
3636 Mf::Sin => "sin",
3637 Mf::Sinh => "sinh",
3638 Mf::Tan => "tan",
3639 Mf::Tanh => "tanh",
3640 Mf::Acos => "acos",
3641 Mf::Asin => "asin",
3642 Mf::Atan => "atan",
3643 Mf::Asinh => "asinh",
3644 Mf::Acosh => "acosh",
3645 Mf::Atanh => "atanh",
3646 Mf::Radians => "radians",
3647 Mf::Degrees => "degrees",
3648 // glsl doesn't have atan2 function
3649 // use two-argument variation of the atan function
3650 Mf::Atan2 => "atan",
3651 // decomposition
3652 Mf::Ceil => "ceil",
3653 Mf::Floor => "floor",
3654 Mf::Round => "roundEven",
3655 Mf::Fract => "fract",
3656 Mf::Trunc => "trunc",
3657 Mf::Modf => MODF_FUNCTION,
3658 Mf::Frexp => FREXP_FUNCTION,
3659 Mf::Ldexp => "ldexp",
3660 // exponent
3661 Mf::Exp => "exp",
3662 Mf::Exp2 => "exp2",
3663 Mf::Log => "log",
3664 Mf::Log2 => "log2",
3665 Mf::Pow => "pow",
3666 // geometry
3667 Mf::Dot => match *ctx.resolve_type(arg, &self.module.types) {
3668 TypeInner::Vector {
3669 scalar:
3670 crate::Scalar {
3671 kind: crate::ScalarKind::Float,
3672 ..
3673 },
3674 ..
3675 } => "dot",
3676 TypeInner::Vector { size, .. } => {
3677 return self.write_dot_product(arg, arg1.unwrap(), size as usize, ctx)
3678 }
3679 _ => unreachable!(
3680 "Correct TypeInner for dot product should be already validated"
3681 ),
3682 },
3683 fun @ (Mf::Dot4I8Packed | Mf::Dot4U8Packed) => {
3684 let conversion = match fun {
3685 Mf::Dot4I8Packed => "int",
3686 Mf::Dot4U8Packed => "",
3687 _ => unreachable!(),
3688 };
3689
3690 let arg1 = arg1.unwrap();
3691
3692 // Write parentheses around the dot product expression to prevent operators
3693 // with different precedences from applying earlier.
3694 write!(self.out, "(")?;
3695 for i in 0..4 {
3696 // Since `bitfieldExtract` only sign extends if the value is signed, we
3697 // need to convert the inputs to `int` in case of `Dot4I8Packed`. For
3698 // `Dot4U8Packed`, the code below only introduces parenthesis around
3699 // each factor, which aren't strictly needed because both operands are
3700 // baked, but which don't hurt either.
3701 write!(self.out, "bitfieldExtract({conversion}(")?;
3702 self.write_expr(arg, ctx)?;
3703 write!(self.out, "), {}, 8)", i * 8)?;
3704
3705 write!(self.out, " * bitfieldExtract({conversion}(")?;
3706 self.write_expr(arg1, ctx)?;
3707 write!(self.out, "), {}, 8)", i * 8)?;
3708
3709 if i != 3 {
3710 write!(self.out, " + ")?;
3711 }
3712 }
3713 write!(self.out, ")")?;
3714
3715 return Ok(());
3716 }
3717 Mf::Outer => "outerProduct",
3718 Mf::Cross => "cross",
3719 Mf::Distance => "distance",
3720 Mf::Length => "length",
3721 Mf::Normalize => "normalize",
3722 Mf::FaceForward => "faceforward",
3723 Mf::Reflect => "reflect",
3724 Mf::Refract => "refract",
3725 // computational
3726 Mf::Sign => "sign",
3727 Mf::Fma => {
3728 if self.options.version.supports_fma_function() {
3729 // Use the fma function when available
3730 "fma"
3731 } else {
3732 // No fma support. Transform the function call into an arithmetic expression
3733 write!(self.out, "(")?;
3734
3735 self.write_expr(arg, ctx)?;
3736 write!(self.out, " * ")?;
3737
3738 let arg1 =
3739 arg1.ok_or_else(|| Error::Custom("Missing fma arg1".to_owned()))?;
3740 self.write_expr(arg1, ctx)?;
3741 write!(self.out, " + ")?;
3742
3743 let arg2 =
3744 arg2.ok_or_else(|| Error::Custom("Missing fma arg2".to_owned()))?;
3745 self.write_expr(arg2, ctx)?;
3746 write!(self.out, ")")?;
3747
3748 return Ok(());
3749 }
3750 }
3751 Mf::Mix => "mix",
3752 Mf::Step => "step",
3753 Mf::SmoothStep => "smoothstep",
3754 Mf::Sqrt => "sqrt",
3755 Mf::InverseSqrt => "inversesqrt",
3756 Mf::Inverse => "inverse",
3757 Mf::Transpose => "transpose",
3758 Mf::Determinant => "determinant",
3759 Mf::QuantizeToF16 => match *ctx.resolve_type(arg, &self.module.types) {
3760 TypeInner::Scalar { .. } => {
3761 write!(self.out, "unpackHalf2x16(packHalf2x16(vec2(")?;
3762 self.write_expr(arg, ctx)?;
3763 write!(self.out, "))).x")?;
3764 return Ok(());
3765 }
3766 TypeInner::Vector {
3767 size: crate::VectorSize::Bi,
3768 ..
3769 } => {
3770 write!(self.out, "unpackHalf2x16(packHalf2x16(")?;
3771 self.write_expr(arg, ctx)?;
3772 write!(self.out, "))")?;
3773 return Ok(());
3774 }
3775 TypeInner::Vector {
3776 size: crate::VectorSize::Tri,
3777 ..
3778 } => {
3779 write!(self.out, "vec3(unpackHalf2x16(packHalf2x16(")?;
3780 self.write_expr(arg, ctx)?;
3781 write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
3782 self.write_expr(arg, ctx)?;
3783 write!(self.out, ".zz)).x)")?;
3784 return Ok(());
3785 }
3786 TypeInner::Vector {
3787 size: crate::VectorSize::Quad,
3788 ..
3789 } => {
3790 write!(self.out, "vec4(unpackHalf2x16(packHalf2x16(")?;
3791 self.write_expr(arg, ctx)?;
3792 write!(self.out, ".xy)), unpackHalf2x16(packHalf2x16(")?;
3793 self.write_expr(arg, ctx)?;
3794 write!(self.out, ".zw)))")?;
3795 return Ok(());
3796 }
3797 _ => unreachable!(
3798 "Correct TypeInner for QuantizeToF16 should be already validated"
3799 ),
3800 },
3801 // bits
3802 Mf::CountTrailingZeros => {
3803 match *ctx.resolve_type(arg, &self.module.types) {
3804 TypeInner::Vector { size, scalar, .. } => {
3805 let s = common::vector_size_str(size);
3806 if let crate::ScalarKind::Uint = scalar.kind {
3807 write!(self.out, "min(uvec{s}(findLSB(")?;
3808 self.write_expr(arg, ctx)?;
3809 write!(self.out, ")), uvec{s}(32u))")?;
3810 } else {
3811 write!(self.out, "ivec{s}(min(uvec{s}(findLSB(")?;
3812 self.write_expr(arg, ctx)?;
3813 write!(self.out, ")), uvec{s}(32u)))")?;
3814 }
3815 }
3816 TypeInner::Scalar(scalar) => {
3817 if let crate::ScalarKind::Uint = scalar.kind {
3818 write!(self.out, "min(uint(findLSB(")?;
3819 self.write_expr(arg, ctx)?;
3820 write!(self.out, ")), 32u)")?;
3821 } else {
3822 write!(self.out, "int(min(uint(findLSB(")?;
3823 self.write_expr(arg, ctx)?;
3824 write!(self.out, ")), 32u))")?;
3825 }
3826 }
3827 _ => unreachable!(),
3828 };
3829 return Ok(());
3830 }
3831 Mf::CountLeadingZeros => {
3832 if self.options.version.supports_integer_functions() {
3833 match *ctx.resolve_type(arg, &self.module.types) {
3834 TypeInner::Vector { size, scalar } => {
3835 let s = common::vector_size_str(size);
3836
3837 if let crate::ScalarKind::Uint = scalar.kind {
3838 write!(self.out, "uvec{s}(ivec{s}(31) - findMSB(")?;
3839 self.write_expr(arg, ctx)?;
3840 write!(self.out, "))")?;
3841 } else {
3842 write!(self.out, "mix(ivec{s}(31) - findMSB(")?;
3843 self.write_expr(arg, ctx)?;
3844 write!(self.out, "), ivec{s}(0), lessThan(")?;
3845 self.write_expr(arg, ctx)?;
3846 write!(self.out, ", ivec{s}(0)))")?;
3847 }
3848 }
3849 TypeInner::Scalar(scalar) => {
3850 if let crate::ScalarKind::Uint = scalar.kind {
3851 write!(self.out, "uint(31 - findMSB(")?;
3852 } else {
3853 write!(self.out, "(")?;
3854 self.write_expr(arg, ctx)?;
3855 write!(self.out, " < 0 ? 0 : 31 - findMSB(")?;
3856 }
3857
3858 self.write_expr(arg, ctx)?;
3859 write!(self.out, "))")?;
3860 }
3861 _ => unreachable!(),
3862 };
3863 } else {
3864 match *ctx.resolve_type(arg, &self.module.types) {
3865 TypeInner::Vector { size, scalar } => {
3866 let s = common::vector_size_str(size);
3867
3868 if let crate::ScalarKind::Uint = scalar.kind {
3869 write!(self.out, "uvec{s}(")?;
3870 write!(self.out, "vec{s}(31.0) - floor(log2(vec{s}(")?;
3871 self.write_expr(arg, ctx)?;
3872 write!(self.out, ") + 0.5)))")?;
3873 } else {
3874 write!(self.out, "ivec{s}(")?;
3875 write!(self.out, "mix(vec{s}(31.0) - floor(log2(vec{s}(")?;
3876 self.write_expr(arg, ctx)?;
3877 write!(self.out, ") + 0.5)), ")?;
3878 write!(self.out, "vec{s}(0.0), lessThan(")?;
3879 self.write_expr(arg, ctx)?;
3880 write!(self.out, ", ivec{s}(0u))))")?;
3881 }
3882 }
3883 TypeInner::Scalar(scalar) => {
3884 if let crate::ScalarKind::Uint = scalar.kind {
3885 write!(self.out, "uint(31.0 - floor(log2(float(")?;
3886 self.write_expr(arg, ctx)?;
3887 write!(self.out, ") + 0.5)))")?;
3888 } else {
3889 write!(self.out, "(")?;
3890 self.write_expr(arg, ctx)?;
3891 write!(self.out, " < 0 ? 0 : int(")?;
3892 write!(self.out, "31.0 - floor(log2(float(")?;
3893 self.write_expr(arg, ctx)?;
3894 write!(self.out, ") + 0.5))))")?;
3895 }
3896 }
3897 _ => unreachable!(),
3898 };
3899 }
3900
3901 return Ok(());
3902 }
3903 Mf::CountOneBits => "bitCount",
3904 Mf::ReverseBits => "bitfieldReverse",
3905 Mf::ExtractBits => {
3906 // The behavior of ExtractBits is undefined when offset + count > bit_width. We need
3907 // to first sanitize the offset and count first. If we don't do this, AMD and Intel chips
3908 // will return out-of-spec values if the extracted range is not within the bit width.
3909 //
3910 // This encodes the exact formula specified by the wgsl spec, without temporary values:
3911 // https://gpuweb.github.io/gpuweb/wgsl/#extractBits-unsigned-builtin
3912 //
3913 // w = sizeof(x) * 8
3914 // o = min(offset, w)
3915 // c = min(count, w - o)
3916 //
3917 // bitfieldExtract(x, o, c)
3918 //
3919 // extract_bits(e, min(offset, w), min(count, w - min(offset, w))))
3920 let scalar_bits = ctx
3921 .resolve_type(arg, &self.module.types)
3922 .scalar_width()
3923 .unwrap()
3924 * 8;
3925
3926 write!(self.out, "bitfieldExtract(")?;
3927 self.write_expr(arg, ctx)?;
3928 write!(self.out, ", int(min(")?;
3929 self.write_expr(arg1.unwrap(), ctx)?;
3930 write!(self.out, ", {scalar_bits}u)), int(min(",)?;
3931 self.write_expr(arg2.unwrap(), ctx)?;
3932 write!(self.out, ", {scalar_bits}u - min(")?;
3933 self.write_expr(arg1.unwrap(), ctx)?;
3934 write!(self.out, ", {scalar_bits}u))))")?;
3935
3936 return Ok(());
3937 }
3938 Mf::InsertBits => {
3939 // InsertBits has the same considerations as ExtractBits above
3940 let scalar_bits = ctx
3941 .resolve_type(arg, &self.module.types)
3942 .scalar_width()
3943 .unwrap()
3944 * 8;
3945
3946 write!(self.out, "bitfieldInsert(")?;
3947 self.write_expr(arg, ctx)?;
3948 write!(self.out, ", ")?;
3949 self.write_expr(arg1.unwrap(), ctx)?;
3950 write!(self.out, ", int(min(")?;
3951 self.write_expr(arg2.unwrap(), ctx)?;
3952 write!(self.out, ", {scalar_bits}u)), int(min(",)?;
3953 self.write_expr(arg3.unwrap(), ctx)?;
3954 write!(self.out, ", {scalar_bits}u - min(")?;
3955 self.write_expr(arg2.unwrap(), ctx)?;
3956 write!(self.out, ", {scalar_bits}u))))")?;
3957
3958 return Ok(());
3959 }
3960 Mf::FirstTrailingBit => "findLSB",
3961 Mf::FirstLeadingBit => "findMSB",
3962 // data packing
3963 Mf::Pack4x8snorm => {
3964 if self.options.version.supports_pack_unpack_4x8() {
3965 "packSnorm4x8"
3966 } else {
3967 // polyfill should go here. Needs a corresponding entry in `need_bake_expression`
3968 return Err(Error::UnsupportedExternal("packSnorm4x8".into()));
3969 }
3970 }
3971 Mf::Pack4x8unorm => {
3972 if self.options.version.supports_pack_unpack_4x8() {
3973 "packUnorm4x8"
3974 } else {
3975 return Err(Error::UnsupportedExternal("packUnorm4x8".to_owned()));
3976 }
3977 }
3978 Mf::Pack2x16snorm => {
3979 if self.options.version.supports_pack_unpack_snorm_2x16() {
3980 "packSnorm2x16"
3981 } else {
3982 return Err(Error::UnsupportedExternal("packSnorm2x16".to_owned()));
3983 }
3984 }
3985 Mf::Pack2x16unorm => {
3986 if self.options.version.supports_pack_unpack_unorm_2x16() {
3987 "packUnorm2x16"
3988 } else {
3989 return Err(Error::UnsupportedExternal("packUnorm2x16".to_owned()));
3990 }
3991 }
3992 Mf::Pack2x16float => {
3993 if self.options.version.supports_pack_unpack_half_2x16() {
3994 "packHalf2x16"
3995 } else {
3996 return Err(Error::UnsupportedExternal("packHalf2x16".to_owned()));
3997 }
3998 }
3999
4000 fun @ (Mf::Pack4xI8 | Mf::Pack4xU8 | Mf::Pack4xI8Clamp | Mf::Pack4xU8Clamp) => {
4001 let was_signed = matches!(fun, Mf::Pack4xI8 | Mf::Pack4xI8Clamp);
4002 let clamp_bounds = match fun {
4003 Mf::Pack4xI8Clamp => Some(("-128", "127")),
4004 Mf::Pack4xU8Clamp => Some(("0", "255")),
4005 _ => None,
4006 };
4007 let const_suffix = if was_signed { "" } else { "u" };
4008 if was_signed {
4009 write!(self.out, "uint(")?;
4010 }
4011 let write_arg = |this: &mut Self| -> BackendResult {
4012 if let Some((min, max)) = clamp_bounds {
4013 write!(this.out, "clamp(")?;
4014 this.write_expr(arg, ctx)?;
4015 write!(this.out, ", {min}{const_suffix}, {max}{const_suffix})")?;
4016 } else {
4017 this.write_expr(arg, ctx)?;
4018 }
4019 Ok(())
4020 };
4021 write!(self.out, "(")?;
4022 write_arg(self)?;
4023 write!(self.out, "[0] & 0xFF{const_suffix}) | ((")?;
4024 write_arg(self)?;
4025 write!(self.out, "[1] & 0xFF{const_suffix}) << 8) | ((")?;
4026 write_arg(self)?;
4027 write!(self.out, "[2] & 0xFF{const_suffix}) << 16) | ((")?;
4028 write_arg(self)?;
4029 write!(self.out, "[3] & 0xFF{const_suffix}) << 24)")?;
4030 if was_signed {
4031 write!(self.out, ")")?;
4032 }
4033
4034 return Ok(());
4035 }
4036 // data unpacking
4037 Mf::Unpack2x16float => {
4038 if self.options.version.supports_pack_unpack_half_2x16() {
4039 "unpackHalf2x16"
4040 } else {
4041 return Err(Error::UnsupportedExternal("unpackHalf2x16".into()));
4042 }
4043 }
4044 Mf::Unpack2x16snorm => {
4045 if self.options.version.supports_pack_unpack_snorm_2x16() {
4046 "unpackSnorm2x16"
4047 } else {
4048 let scale = 32767;
4049
4050 write!(self.out, "(vec2(ivec2(")?;
4051 self.write_expr(arg, ctx)?;
4052 write!(self.out, " << 16, ")?;
4053 self.write_expr(arg, ctx)?;
4054 write!(self.out, ") >> 16) / {scale}.0)")?;
4055 return Ok(());
4056 }
4057 }
4058 Mf::Unpack2x16unorm => {
4059 if self.options.version.supports_pack_unpack_unorm_2x16() {
4060 "unpackUnorm2x16"
4061 } else {
4062 let scale = 65535;
4063
4064 write!(self.out, "(vec2(")?;
4065 self.write_expr(arg, ctx)?;
4066 write!(self.out, " & 0xFFFFu, ")?;
4067 self.write_expr(arg, ctx)?;
4068 write!(self.out, " >> 16) / {scale}.0)")?;
4069 return Ok(());
4070 }
4071 }
4072 Mf::Unpack4x8snorm => {
4073 if self.options.version.supports_pack_unpack_4x8() {
4074 "unpackSnorm4x8"
4075 } else {
4076 let scale = 127;
4077
4078 write!(self.out, "(vec4(ivec4(")?;
4079 self.write_expr(arg, ctx)?;
4080 write!(self.out, " << 24, ")?;
4081 self.write_expr(arg, ctx)?;
4082 write!(self.out, " << 16, ")?;
4083 self.write_expr(arg, ctx)?;
4084 write!(self.out, " << 8, ")?;
4085 self.write_expr(arg, ctx)?;
4086 write!(self.out, ") >> 24) / {scale}.0)")?;
4087 return Ok(());
4088 }
4089 }
4090 Mf::Unpack4x8unorm => {
4091 if self.options.version.supports_pack_unpack_4x8() {
4092 "unpackUnorm4x8"
4093 } else {
4094 let scale = 255;
4095
4096 write!(self.out, "(vec4(")?;
4097 self.write_expr(arg, ctx)?;
4098 write!(self.out, " & 0xFFu, ")?;
4099 self.write_expr(arg, ctx)?;
4100 write!(self.out, " >> 8 & 0xFFu, ")?;
4101 self.write_expr(arg, ctx)?;
4102 write!(self.out, " >> 16 & 0xFFu, ")?;
4103 self.write_expr(arg, ctx)?;
4104 write!(self.out, " >> 24) / {scale}.0)")?;
4105 return Ok(());
4106 }
4107 }
4108 fun @ (Mf::Unpack4xI8 | Mf::Unpack4xU8) => {
4109 let sign_prefix = match fun {
4110 Mf::Unpack4xI8 => 'i',
4111 Mf::Unpack4xU8 => 'u',
4112 _ => unreachable!(),
4113 };
4114 write!(self.out, "{sign_prefix}vec4(")?;
4115 for i in 0..4 {
4116 write!(self.out, "bitfieldExtract(")?;
4117 // Since bitfieldExtract only sign extends if the value is signed, this
4118 // cast is needed
4119 match fun {
4120 Mf::Unpack4xI8 => {
4121 write!(self.out, "int(")?;
4122 self.write_expr(arg, ctx)?;
4123 write!(self.out, ")")?;
4124 }
4125 Mf::Unpack4xU8 => self.write_expr(arg, ctx)?,
4126 _ => unreachable!(),
4127 };
4128 write!(self.out, ", {}, 8)", i * 8)?;
4129 if i != 3 {
4130 write!(self.out, ", ")?;
4131 }
4132 }
4133 write!(self.out, ")")?;
4134
4135 return Ok(());
4136 }
4137 };
4138
4139 let extract_bits = fun == Mf::ExtractBits;
4140 let insert_bits = fun == Mf::InsertBits;
4141
4142 // Some GLSL functions always return signed integers (like findMSB),
4143 // so they need to be cast to uint if the argument is also an uint.
4144 let ret_might_need_int_to_uint = matches!(
4145 fun,
4146 Mf::FirstTrailingBit | Mf::FirstLeadingBit | Mf::CountOneBits | Mf::Abs
4147 );
4148
4149 // Some GLSL functions only accept signed integers (like abs),
4150 // so they need their argument cast from uint to int.
4151 let arg_might_need_uint_to_int = matches!(fun, Mf::Abs);
4152
4153 // Check if the argument is an unsigned integer and return the vector size
4154 // in case it's a vector
4155 let maybe_uint_size = match *ctx.resolve_type(arg, &self.module.types) {
4156 TypeInner::Scalar(crate::Scalar {
4157 kind: crate::ScalarKind::Uint,
4158 ..
4159 }) => Some(None),
4160 TypeInner::Vector {
4161 scalar:
4162 crate::Scalar {
4163 kind: crate::ScalarKind::Uint,
4164 ..
4165 },
4166 size,
4167 } => Some(Some(size)),
4168 _ => None,
4169 };
4170
4171 // Cast to uint if the function needs it
4172 if ret_might_need_int_to_uint {
4173 if let Some(maybe_size) = maybe_uint_size {
4174 match maybe_size {
4175 Some(size) => write!(self.out, "uvec{}(", size as u8)?,
4176 None => write!(self.out, "uint(")?,
4177 }
4178 }
4179 }
4180
4181 write!(self.out, "{fun_name}(")?;
4182
4183 // Cast to int if the function needs it
4184 if arg_might_need_uint_to_int {
4185 if let Some(maybe_size) = maybe_uint_size {
4186 match maybe_size {
4187 Some(size) => write!(self.out, "ivec{}(", size as u8)?,
4188 None => write!(self.out, "int(")?,
4189 }
4190 }
4191 }
4192
4193 self.write_expr(arg, ctx)?;
4194
4195 // Close the cast from uint to int
4196 if arg_might_need_uint_to_int && maybe_uint_size.is_some() {
4197 write!(self.out, ")")?
4198 }
4199
4200 if let Some(arg) = arg1 {
4201 write!(self.out, ", ")?;
4202 if extract_bits {
4203 write!(self.out, "int(")?;
4204 self.write_expr(arg, ctx)?;
4205 write!(self.out, ")")?;
4206 } else {
4207 self.write_expr(arg, ctx)?;
4208 }
4209 }
4210 if let Some(arg) = arg2 {
4211 write!(self.out, ", ")?;
4212 if extract_bits || insert_bits {
4213 write!(self.out, "int(")?;
4214 self.write_expr(arg, ctx)?;
4215 write!(self.out, ")")?;
4216 } else {
4217 self.write_expr(arg, ctx)?;
4218 }
4219 }
4220 if let Some(arg) = arg3 {
4221 write!(self.out, ", ")?;
4222 if insert_bits {
4223 write!(self.out, "int(")?;
4224 self.write_expr(arg, ctx)?;
4225 write!(self.out, ")")?;
4226 } else {
4227 self.write_expr(arg, ctx)?;
4228 }
4229 }
4230 write!(self.out, ")")?;
4231
4232 // Close the cast from int to uint
4233 if ret_might_need_int_to_uint && maybe_uint_size.is_some() {
4234 write!(self.out, ")")?
4235 }
4236 }
4237 // `As` is always a call.
4238 // If `convert` is true the function name is the type
4239 // Else the function name is one of the glsl provided bitcast functions
4240 Expression::As {
4241 expr,
4242 kind: target_kind,
4243 convert,
4244 } => {
4245 let inner = ctx.resolve_type(expr, &self.module.types);
4246 match convert {
4247 Some(width) => {
4248 // this is similar to `write_type`, but with the target kind
4249 let scalar = glsl_scalar(crate::Scalar {
4250 kind: target_kind,
4251 width,
4252 })?;
4253 match *inner {
4254 TypeInner::Matrix { columns, rows, .. } => write!(
4255 self.out,
4256 "{}mat{}x{}",
4257 scalar.prefix, columns as u8, rows as u8
4258 )?,
4259 TypeInner::Vector { size, .. } => {
4260 write!(self.out, "{}vec{}", scalar.prefix, size as u8)?
4261 }
4262 _ => write!(self.out, "{}", scalar.full)?,
4263 }
4264
4265 write!(self.out, "(")?;
4266 self.write_expr(expr, ctx)?;
4267 write!(self.out, ")")?
4268 }
4269 None => {
4270 use crate::ScalarKind as Sk;
4271
4272 let target_vector_type = match *inner {
4273 TypeInner::Vector { size, scalar } => Some(TypeInner::Vector {
4274 size,
4275 scalar: crate::Scalar {
4276 kind: target_kind,
4277 width: scalar.width,
4278 },
4279 }),
4280 _ => None,
4281 };
4282
4283 let source_kind = inner.scalar_kind().unwrap();
4284
4285 match (source_kind, target_kind, target_vector_type) {
4286 // No conversion needed
4287 (Sk::Sint, Sk::Sint, _)
4288 | (Sk::Uint, Sk::Uint, _)
4289 | (Sk::Float, Sk::Float, _)
4290 | (Sk::Bool, Sk::Bool, _) => {
4291 self.write_expr(expr, ctx)?;
4292 return Ok(());
4293 }
4294
4295 // Cast to/from floats
4296 (Sk::Float, Sk::Sint, _) => write!(self.out, "floatBitsToInt")?,
4297 (Sk::Float, Sk::Uint, _) => write!(self.out, "floatBitsToUint")?,
4298 (Sk::Sint, Sk::Float, _) => write!(self.out, "intBitsToFloat")?,
4299 (Sk::Uint, Sk::Float, _) => write!(self.out, "uintBitsToFloat")?,
4300
4301 // Cast between vector types
4302 (_, _, Some(vector)) => {
4303 self.write_value_type(&vector)?;
4304 }
4305
4306 // There is no way to bitcast between Uint/Sint in glsl. Use constructor conversion
4307 (Sk::Uint | Sk::Bool, Sk::Sint, None) => write!(self.out, "int")?,
4308 (Sk::Sint | Sk::Bool, Sk::Uint, None) => write!(self.out, "uint")?,
4309 (Sk::Bool, Sk::Float, None) => write!(self.out, "float")?,
4310 (Sk::Sint | Sk::Uint | Sk::Float, Sk::Bool, None) => {
4311 write!(self.out, "bool")?
4312 }
4313
4314 (Sk::AbstractInt | Sk::AbstractFloat, _, _)
4315 | (_, Sk::AbstractInt | Sk::AbstractFloat, _) => unreachable!(),
4316 };
4317
4318 write!(self.out, "(")?;
4319 self.write_expr(expr, ctx)?;
4320 write!(self.out, ")")?;
4321 }
4322 }
4323 }
4324 // These expressions never show up in `Emit`.
4325 Expression::CallResult(_)
4326 | Expression::AtomicResult { .. }
4327 | Expression::RayQueryProceedResult
4328 | Expression::WorkGroupUniformLoadResult { .. }
4329 | Expression::SubgroupOperationResult { .. }
4330 | Expression::SubgroupBallotResult => unreachable!(),
4331 // `ArrayLength` is written as `expr.length()` and we convert it to a uint
4332 Expression::ArrayLength(expr) => {
4333 write!(self.out, "uint(")?;
4334 self.write_expr(expr, ctx)?;
4335 write!(self.out, ".length())")?
4336 }
4337 // not supported yet
4338 Expression::RayQueryGetIntersection { .. }
4339 | Expression::RayQueryVertexPositions { .. } => unreachable!(),
4340 }
4341
4342 Ok(())
4343 }
4344
4345 /// Helper function to write the local holding the clamped lod
4346 fn write_clamped_lod(
4347 &mut self,
4348 ctx: &back::FunctionCtx,
4349 expr: Handle<crate::Expression>,
4350 image: Handle<crate::Expression>,
4351 level_expr: Handle<crate::Expression>,
4352 ) -> Result<(), Error> {
4353 // Define our local and start a call to `clamp`
4354 write!(
4355 self.out,
4356 "int {}{} = clamp(",
4357 Baked(expr),
4358 CLAMPED_LOD_SUFFIX
4359 )?;
4360 // Write the lod that will be clamped
4361 self.write_expr(level_expr, ctx)?;
4362 // Set the min value to 0 and start a call to `textureQueryLevels` to get
4363 // the maximum value
4364 write!(self.out, ", 0, textureQueryLevels(")?;
4365 // Write the target image as an argument to `textureQueryLevels`
4366 self.write_expr(image, ctx)?;
4367 // Close the call to `textureQueryLevels` subtract 1 from it since
4368 // the lod argument is 0 based, close the `clamp` call and end the
4369 // local declaration statement.
4370 writeln!(self.out, ") - 1);")?;
4371
4372 Ok(())
4373 }
4374
4375 // Helper method used to retrieve how many elements a coordinate vector
4376 // for the images operations need.
4377 fn get_coordinate_vector_size(&self, dim: crate::ImageDimension, arrayed: bool) -> u8 {
4378 // openGL es doesn't have 1D images so we need workaround it
4379 let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
4380 // Get how many components the coordinate vector needs for the dimensions only
4381 let tex_coord_size = match dim {
4382 crate::ImageDimension::D1 => 1,
4383 crate::ImageDimension::D2 => 2,
4384 crate::ImageDimension::D3 => 3,
4385 crate::ImageDimension::Cube => 2,
4386 };
4387 // Calculate the true size of the coordinate vector by adding 1 for arrayed images
4388 // and another 1 if we need to workaround 1D images by making them 2D
4389 tex_coord_size + tex_1d_hack as u8 + arrayed as u8
4390 }
4391
4392 /// Helper method to write the coordinate vector for image operations
4393 fn write_texture_coord(
4394 &mut self,
4395 ctx: &back::FunctionCtx,
4396 vector_size: u8,
4397 coordinate: Handle<crate::Expression>,
4398 array_index: Option<Handle<crate::Expression>>,
4399 // Emulate 1D images as 2D for profiles that don't support it (glsl es)
4400 tex_1d_hack: bool,
4401 ) -> Result<(), Error> {
4402 match array_index {
4403 // If the image needs an array indice we need to add it to the end of our
4404 // coordinate vector, to do so we will use the `ivec(ivec, scalar)`
4405 // constructor notation (NOTE: the inner `ivec` can also be a scalar, this
4406 // is important for 1D arrayed images).
4407 Some(layer_expr) => {
4408 write!(self.out, "ivec{vector_size}(")?;
4409 self.write_expr(coordinate, ctx)?;
4410 write!(self.out, ", ")?;
4411 // If we are replacing sampler1D with sampler2D we also need
4412 // to add another zero to the coordinates vector for the y component
4413 if tex_1d_hack {
4414 write!(self.out, "0, ")?;
4415 }
4416 self.write_expr(layer_expr, ctx)?;
4417 write!(self.out, ")")?;
4418 }
4419 // Otherwise write just the expression (and the 1D hack if needed)
4420 None => {
4421 let uvec_size = match *ctx.resolve_type(coordinate, &self.module.types) {
4422 TypeInner::Scalar(crate::Scalar {
4423 kind: crate::ScalarKind::Uint,
4424 ..
4425 }) => Some(None),
4426 TypeInner::Vector {
4427 size,
4428 scalar:
4429 crate::Scalar {
4430 kind: crate::ScalarKind::Uint,
4431 ..
4432 },
4433 } => Some(Some(size as u32)),
4434 _ => None,
4435 };
4436 if tex_1d_hack {
4437 write!(self.out, "ivec2(")?;
4438 } else if uvec_size.is_some() {
4439 match uvec_size {
4440 Some(None) => write!(self.out, "int(")?,
4441 Some(Some(size)) => write!(self.out, "ivec{size}(")?,
4442 _ => {}
4443 }
4444 }
4445 self.write_expr(coordinate, ctx)?;
4446 if tex_1d_hack {
4447 write!(self.out, ", 0)")?;
4448 } else if uvec_size.is_some() {
4449 write!(self.out, ")")?;
4450 }
4451 }
4452 }
4453
4454 Ok(())
4455 }
4456
4457 /// Helper method to write the `ImageStore` statement
4458 fn write_image_store(
4459 &mut self,
4460 ctx: &back::FunctionCtx,
4461 image: Handle<crate::Expression>,
4462 coordinate: Handle<crate::Expression>,
4463 array_index: Option<Handle<crate::Expression>>,
4464 value: Handle<crate::Expression>,
4465 ) -> Result<(), Error> {
4466 use crate::ImageDimension as IDim;
4467
4468 // NOTE: openGL requires that `imageStore`s have no effects when the texel is invalid
4469 // so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
4470
4471 // This will only panic if the module is invalid
4472 let dim = match *ctx.resolve_type(image, &self.module.types) {
4473 TypeInner::Image { dim, .. } => dim,
4474 _ => unreachable!(),
4475 };
4476
4477 // Begin our call to `imageStore`
4478 write!(self.out, "imageStore(")?;
4479 self.write_expr(image, ctx)?;
4480 // Separate the image argument from the coordinates
4481 write!(self.out, ", ")?;
4482
4483 // openGL es doesn't have 1D images so we need workaround it
4484 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4485 // Write the coordinate vector
4486 self.write_texture_coord(
4487 ctx,
4488 // Get the size of the coordinate vector
4489 self.get_coordinate_vector_size(dim, array_index.is_some()),
4490 coordinate,
4491 array_index,
4492 tex_1d_hack,
4493 )?;
4494
4495 // Separate the coordinate from the value to write and write the expression
4496 // of the value to write.
4497 write!(self.out, ", ")?;
4498 self.write_expr(value, ctx)?;
4499 // End the call to `imageStore` and the statement.
4500 writeln!(self.out, ");")?;
4501
4502 Ok(())
4503 }
4504
4505 /// Helper method to write the `ImageAtomic` statement
4506 fn write_image_atomic(
4507 &mut self,
4508 ctx: &back::FunctionCtx,
4509 image: Handle<crate::Expression>,
4510 coordinate: Handle<crate::Expression>,
4511 array_index: Option<Handle<crate::Expression>>,
4512 fun: crate::AtomicFunction,
4513 value: Handle<crate::Expression>,
4514 ) -> Result<(), Error> {
4515 use crate::ImageDimension as IDim;
4516
4517 // NOTE: openGL requires that `imageAtomic`s have no effects when the texel is invalid
4518 // so we don't need to generate bounds checks (OpenGL 4.2 Core §3.9.20)
4519
4520 // This will only panic if the module is invalid
4521 let dim = match *ctx.resolve_type(image, &self.module.types) {
4522 TypeInner::Image { dim, .. } => dim,
4523 _ => unreachable!(),
4524 };
4525
4526 // Begin our call to `imageAtomic`
4527 let fun_str = fun.to_glsl();
4528 write!(self.out, "imageAtomic{fun_str}(")?;
4529 self.write_expr(image, ctx)?;
4530 // Separate the image argument from the coordinates
4531 write!(self.out, ", ")?;
4532
4533 // openGL es doesn't have 1D images so we need workaround it
4534 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4535 // Write the coordinate vector
4536 self.write_texture_coord(
4537 ctx,
4538 // Get the size of the coordinate vector
4539 self.get_coordinate_vector_size(dim, false),
4540 coordinate,
4541 array_index,
4542 tex_1d_hack,
4543 )?;
4544
4545 // Separate the coordinate from the value to write and write the expression
4546 // of the value to write.
4547 write!(self.out, ", ")?;
4548 self.write_expr(value, ctx)?;
4549 // End the call to `imageAtomic` and the statement.
4550 writeln!(self.out, ");")?;
4551
4552 Ok(())
4553 }
4554
4555 /// Helper method for writing an `ImageLoad` expression.
4556 #[allow(clippy::too_many_arguments)]
4557 fn write_image_load(
4558 &mut self,
4559 handle: Handle<crate::Expression>,
4560 ctx: &back::FunctionCtx,
4561 image: Handle<crate::Expression>,
4562 coordinate: Handle<crate::Expression>,
4563 array_index: Option<Handle<crate::Expression>>,
4564 sample: Option<Handle<crate::Expression>>,
4565 level: Option<Handle<crate::Expression>>,
4566 ) -> Result<(), Error> {
4567 use crate::ImageDimension as IDim;
4568
4569 // `ImageLoad` is a bit complicated.
4570 // There are two functions one for sampled
4571 // images another for storage images, the former uses `texelFetch` and the
4572 // latter uses `imageLoad`.
4573 //
4574 // Furthermore we have `level` which is always `Some` for sampled images
4575 // and `None` for storage images, so we end up with two functions:
4576 // - `texelFetch(image, coordinate, level)` for sampled images
4577 // - `imageLoad(image, coordinate)` for storage images
4578 //
4579 // Finally we also have to consider bounds checking, for storage images
4580 // this is easy since openGL requires that invalid texels always return
4581 // 0, for sampled images we need to either verify that all arguments are
4582 // in bounds (`ReadZeroSkipWrite`) or make them a valid texel (`Restrict`).
4583
4584 // This will only panic if the module is invalid
4585 let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
4586 TypeInner::Image {
4587 dim,
4588 arrayed: _,
4589 class,
4590 } => (dim, class),
4591 _ => unreachable!(),
4592 };
4593
4594 // Get the name of the function to be used for the load operation
4595 // and the policy to be used with it.
4596 let (fun_name, policy) = match class {
4597 // Sampled images inherit the policy from the user passed policies
4598 crate::ImageClass::Sampled { .. } => ("texelFetch", self.policies.image_load),
4599 crate::ImageClass::Storage { .. } => {
4600 // OpenGL ES 3.1 mentions in Chapter "8.22 Texture Image Loads and Stores" that:
4601 // "Invalid image loads will return a vector where the value of R, G, and B components
4602 // is 0 and the value of the A component is undefined."
4603 //
4604 // OpenGL 4.2 Core mentions in Chapter "3.9.20 Texture Image Loads and Stores" that:
4605 // "Invalid image loads will return zero."
4606 //
4607 // So, we only inject bounds checks for ES
4608 let policy = if self.options.version.is_es() {
4609 self.policies.image_load
4610 } else {
4611 proc::BoundsCheckPolicy::Unchecked
4612 };
4613 ("imageLoad", policy)
4614 }
4615 // TODO: Is there even a function for this?
4616 crate::ImageClass::Depth { multi: _ } => {
4617 return Err(Error::Custom(
4618 "WGSL `textureLoad` from depth textures is not supported in GLSL".to_string(),
4619 ))
4620 }
4621 };
4622
4623 // openGL es doesn't have 1D images so we need workaround it
4624 let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
4625 // Get the size of the coordinate vector
4626 let vector_size = self.get_coordinate_vector_size(dim, array_index.is_some());
4627
4628 if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
4629 // To write the bounds checks for `ReadZeroSkipWrite` we will use a
4630 // ternary operator since we are in the middle of an expression and
4631 // need to return a value.
4632 //
4633 // NOTE: glsl does short circuit when evaluating logical
4634 // expressions so we can be sure that after we test a
4635 // condition it will be true for the next ones
4636
4637 // Write parentheses around the ternary operator to prevent problems with
4638 // expressions emitted before or after it having more precedence
4639 write!(self.out, "(",)?;
4640
4641 // The lod check needs to precede the size check since we need
4642 // to use the lod to get the size of the image at that level.
4643 if let Some(level_expr) = level {
4644 self.write_expr(level_expr, ctx)?;
4645 write!(self.out, " < textureQueryLevels(",)?;
4646 self.write_expr(image, ctx)?;
4647 // Chain the next check
4648 write!(self.out, ") && ")?;
4649 }
4650
4651 // Check that the sample arguments doesn't exceed the number of samples
4652 if let Some(sample_expr) = sample {
4653 self.write_expr(sample_expr, ctx)?;
4654 write!(self.out, " < textureSamples(",)?;
4655 self.write_expr(image, ctx)?;
4656 // Chain the next check
4657 write!(self.out, ") && ")?;
4658 }
4659
4660 // We now need to write the size checks for the coordinates and array index
4661 // first we write the comparison function in case the image is 1D non arrayed
4662 // (and no 1D to 2D hack was needed) we are comparing scalars so the less than
4663 // operator will suffice, but otherwise we'll be comparing two vectors so we'll
4664 // need to use the `lessThan` function but it returns a vector of booleans (one
4665 // for each comparison) so we need to fold it all in one scalar boolean, since
4666 // we want all comparisons to pass we use the `all` function which will only
4667 // return `true` if all the elements of the boolean vector are also `true`.
4668 //
4669 // So we'll end with one of the following forms
4670 // - `coord < textureSize(image, lod)` for 1D images
4671 // - `all(lessThan(coord, textureSize(image, lod)))` for normal images
4672 // - `all(lessThan(ivec(coord, array_index), textureSize(image, lod)))`
4673 // for arrayed images
4674 // - `all(lessThan(coord, textureSize(image)))` for multi sampled images
4675
4676 if vector_size != 1 {
4677 write!(self.out, "all(lessThan(")?;
4678 }
4679
4680 // Write the coordinate vector
4681 self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
4682
4683 if vector_size != 1 {
4684 // If we used the `lessThan` function we need to separate the
4685 // coordinates from the image size.
4686 write!(self.out, ", ")?;
4687 } else {
4688 // If we didn't use it (ie. 1D images) we perform the comparison
4689 // using the less than operator.
4690 write!(self.out, " < ")?;
4691 }
4692
4693 // Call `textureSize` to get our image size
4694 write!(self.out, "textureSize(")?;
4695 self.write_expr(image, ctx)?;
4696 // `textureSize` uses the lod as a second argument for mipmapped images
4697 if let Some(level_expr) = level {
4698 // Separate the image from the lod
4699 write!(self.out, ", ")?;
4700 self.write_expr(level_expr, ctx)?;
4701 }
4702 // Close the `textureSize` call
4703 write!(self.out, ")")?;
4704
4705 if vector_size != 1 {
4706 // Close the `all` and `lessThan` calls
4707 write!(self.out, "))")?;
4708 }
4709
4710 // Finally end the condition part of the ternary operator
4711 write!(self.out, " ? ")?;
4712 }
4713
4714 // Begin the call to the function used to load the texel
4715 write!(self.out, "{fun_name}(")?;
4716 self.write_expr(image, ctx)?;
4717 write!(self.out, ", ")?;
4718
4719 // If we are using `Restrict` bounds checking we need to pass valid texel
4720 // coordinates, to do so we use the `clamp` function to get a value between
4721 // 0 and the image size - 1 (indexing begins at 0)
4722 if let proc::BoundsCheckPolicy::Restrict = policy {
4723 write!(self.out, "clamp(")?;
4724 }
4725
4726 // Write the coordinate vector
4727 self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;
4728
4729 // If we are using `Restrict` bounds checking we need to write the rest of the
4730 // clamp we initiated before writing the coordinates.
4731 if let proc::BoundsCheckPolicy::Restrict = policy {
4732 // Write the min value 0
4733 if vector_size == 1 {
4734 write!(self.out, ", 0")?;
4735 } else {
4736 write!(self.out, ", ivec{vector_size}(0)")?;
4737 }
4738 // Start the `textureSize` call to use as the max value.
4739 write!(self.out, ", textureSize(")?;
4740 self.write_expr(image, ctx)?;
4741 // If the image is mipmapped we need to add the lod argument to the
4742 // `textureSize` call, but this needs to be the clamped lod, this should
4743 // have been generated earlier and put in a local.
4744 if class.is_mipmapped() {
4745 write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
4746 }
4747 // Close the `textureSize` call
4748 write!(self.out, ")")?;
4749
4750 // Subtract 1 from the `textureSize` call since the coordinates are zero based.
4751 if vector_size == 1 {
4752 write!(self.out, " - 1")?;
4753 } else {
4754 write!(self.out, " - ivec{vector_size}(1)")?;
4755 }
4756
4757 // Close the `clamp` call
4758 write!(self.out, ")")?;
4759
4760 // Add the clamped lod (if present) as the second argument to the
4761 // image load function.
4762 if level.is_some() {
4763 write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
4764 }
4765
4766 // If a sample argument is needed we need to clamp it between 0 and
4767 // the number of samples the image has.
4768 if let Some(sample_expr) = sample {
4769 write!(self.out, ", clamp(")?;
4770 self.write_expr(sample_expr, ctx)?;
4771 // Set the min value to 0 and start the call to `textureSamples`
4772 write!(self.out, ", 0, textureSamples(")?;
4773 self.write_expr(image, ctx)?;
4774 // Close the `textureSamples` call, subtract 1 from it since the sample
4775 // argument is zero based, and close the `clamp` call
4776 writeln!(self.out, ") - 1)")?;
4777 }
4778 } else if let Some(sample_or_level) = sample.or(level) {
4779 // GLSL only support SInt on this field while WGSL support also UInt
4780 let cast_to_int = matches!(
4781 *ctx.resolve_type(sample_or_level, &self.module.types),
4782 TypeInner::Scalar(crate::Scalar {
4783 kind: crate::ScalarKind::Uint,
4784 ..
4785 })
4786 );
4787
4788 // If no bounds checking is need just add the sample or level argument
4789 // after the coordinates
4790 write!(self.out, ", ")?;
4791
4792 if cast_to_int {
4793 write!(self.out, "int(")?;
4794 }
4795
4796 self.write_expr(sample_or_level, ctx)?;
4797
4798 if cast_to_int {
4799 write!(self.out, ")")?;
4800 }
4801 }
4802
4803 // Close the image load function.
4804 write!(self.out, ")")?;
4805
4806 // If we were using the `ReadZeroSkipWrite` policy we need to end the first branch
4807 // (which is taken if the condition is `true`) with a colon (`:`) and write the
4808 // second branch which is just a 0 value.
4809 if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
4810 // Get the kind of the output value.
4811 let kind = match class {
4812 // Only sampled images can reach here since storage images
4813 // don't need bounds checks and depth images aren't implemented
4814 crate::ImageClass::Sampled { kind, .. } => kind,
4815 _ => unreachable!(),
4816 };
4817
4818 // End the first branch
4819 write!(self.out, " : ")?;
4820 // Write the 0 value
4821 write!(
4822 self.out,
4823 "{}vec4(",
4824 glsl_scalar(crate::Scalar { kind, width: 4 })?.prefix,
4825 )?;
4826 self.write_zero_init_scalar(kind)?;
4827 // Close the zero value constructor
4828 write!(self.out, ")")?;
4829 // Close the parentheses surrounding our ternary
4830 write!(self.out, ")")?;
4831 }
4832
4833 Ok(())
4834 }
4835
4836 fn write_named_expr(
4837 &mut self,
4838 handle: Handle<crate::Expression>,
4839 name: String,
4840 // The expression which is being named.
4841 // Generally, this is the same as handle, except in WorkGroupUniformLoad
4842 named: Handle<crate::Expression>,
4843 ctx: &back::FunctionCtx,
4844 ) -> BackendResult {
4845 match ctx.info[named].ty {
4846 proc::TypeResolution::Handle(ty_handle) => match self.module.types[ty_handle].inner {
4847 TypeInner::Struct { .. } => {
4848 let ty_name = &self.names[&NameKey::Type(ty_handle)];
4849 write!(self.out, "{ty_name}")?;
4850 }
4851 _ => {
4852 self.write_type(ty_handle)?;
4853 }
4854 },
4855 proc::TypeResolution::Value(ref inner) => {
4856 self.write_value_type(inner)?;
4857 }
4858 }
4859
4860 let resolved = ctx.resolve_type(named, &self.module.types);
4861
4862 write!(self.out, " {name}")?;
4863 if let TypeInner::Array { base, size, .. } = *resolved {
4864 self.write_array_size(base, size)?;
4865 }
4866 write!(self.out, " = ")?;
4867 self.write_expr(handle, ctx)?;
4868 writeln!(self.out, ";")?;
4869 self.named_expressions.insert(named, name);
4870
4871 Ok(())
4872 }
4873
4874 /// Helper function that write string with default zero initialization for supported types
4875 fn write_zero_init_value(&mut self, ty: Handle<crate::Type>) -> BackendResult {
4876 let inner = &self.module.types[ty].inner;
4877 match *inner {
4878 TypeInner::Scalar(scalar) | TypeInner::Atomic(scalar) => {
4879 self.write_zero_init_scalar(scalar.kind)?;
4880 }
4881 TypeInner::Vector { scalar, .. } => {
4882 self.write_value_type(inner)?;
4883 write!(self.out, "(")?;
4884 self.write_zero_init_scalar(scalar.kind)?;
4885 write!(self.out, ")")?;
4886 }
4887 TypeInner::Matrix { .. } => {
4888 self.write_value_type(inner)?;
4889 write!(self.out, "(")?;
4890 self.write_zero_init_scalar(crate::ScalarKind::Float)?;
4891 write!(self.out, ")")?;
4892 }
4893 TypeInner::Array { base, size, .. } => {
4894 let count = match size.resolve(self.module.to_ctx())? {
4895 proc::IndexableLength::Known(count) => count,
4896 proc::IndexableLength::Dynamic => return Ok(()),
4897 };
4898 self.write_type(base)?;
4899 self.write_array_size(base, size)?;
4900 write!(self.out, "(")?;
4901 for _ in 1..count {
4902 self.write_zero_init_value(base)?;
4903 write!(self.out, ", ")?;
4904 }
4905 // write last parameter without comma and space
4906 self.write_zero_init_value(base)?;
4907 write!(self.out, ")")?;
4908 }
4909 TypeInner::Struct { ref members, .. } => {
4910 let name = &self.names[&NameKey::Type(ty)];
4911 write!(self.out, "{name}(")?;
4912 for (index, member) in members.iter().enumerate() {
4913 if index != 0 {
4914 write!(self.out, ", ")?;
4915 }
4916 self.write_zero_init_value(member.ty)?;
4917 }
4918 write!(self.out, ")")?;
4919 }
4920 _ => unreachable!(),
4921 }
4922
4923 Ok(())
4924 }
4925
4926 /// Helper function that write string with zero initialization for scalar
4927 fn write_zero_init_scalar(&mut self, kind: crate::ScalarKind) -> BackendResult {
4928 match kind {
4929 crate::ScalarKind::Bool => write!(self.out, "false")?,
4930 crate::ScalarKind::Uint => write!(self.out, "0u")?,
4931 crate::ScalarKind::Float => write!(self.out, "0.0")?,
4932 crate::ScalarKind::Sint => write!(self.out, "0")?,
4933 crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => {
4934 return Err(Error::Custom(
4935 "Abstract types should not appear in IR presented to backends".to_string(),
4936 ))
4937 }
4938 }
4939
4940 Ok(())
4941 }
4942
4943 /// Issue a control barrier.
4944 fn write_control_barrier(
4945 &mut self,
4946 flags: crate::Barrier,
4947 level: back::Level,
4948 ) -> BackendResult {
4949 self.write_memory_barrier(flags, level)?;
4950 writeln!(self.out, "{level}barrier();")?;
4951 Ok(())
4952 }
4953
4954 /// Issue a memory barrier.
4955 fn write_memory_barrier(&mut self, flags: crate::Barrier, level: back::Level) -> BackendResult {
4956 if flags.contains(crate::Barrier::STORAGE) {
4957 writeln!(self.out, "{level}memoryBarrierBuffer();")?;
4958 }
4959 if flags.contains(crate::Barrier::WORK_GROUP) {
4960 writeln!(self.out, "{level}memoryBarrierShared();")?;
4961 }
4962 if flags.contains(crate::Barrier::SUB_GROUP) {
4963 writeln!(self.out, "{level}subgroupMemoryBarrier();")?;
4964 }
4965 if flags.contains(crate::Barrier::TEXTURE) {
4966 writeln!(self.out, "{level}memoryBarrierImage();")?;
4967 }
4968 Ok(())
4969 }
4970
4971 /// Helper function that return the glsl storage access string of [`StorageAccess`](crate::StorageAccess)
4972 ///
4973 /// glsl allows adding both `readonly` and `writeonly` but this means that
4974 /// they can only be used to query information about the resource which isn't what
4975 /// we want here so when storage access is both `LOAD` and `STORE` add no modifiers
4976 fn write_storage_access(&mut self, storage_access: crate::StorageAccess) -> BackendResult {
4977 if storage_access.contains(crate::StorageAccess::ATOMIC) {
4978 return Ok(());
4979 }
4980 if !storage_access.contains(crate::StorageAccess::STORE) {
4981 write!(self.out, "readonly ")?;
4982 }
4983 if !storage_access.contains(crate::StorageAccess::LOAD) {
4984 write!(self.out, "writeonly ")?;
4985 }
4986 Ok(())
4987 }
4988
4989 /// Helper method used to produce the reflection info that's returned to the user
4990 fn collect_reflection_info(&mut self) -> Result<ReflectionInfo, Error> {
4991 let info = self.info.get_entry_point(self.entry_point_idx as usize);
4992 let mut texture_mapping = crate::FastHashMap::default();
4993 let mut uniforms = crate::FastHashMap::default();
4994
4995 for sampling in info.sampling_set.iter() {
4996 let tex_name = self.reflection_names_globals[&sampling.image].clone();
4997
4998 match texture_mapping.entry(tex_name) {
4999 hash_map::Entry::Vacant(v) => {
5000 v.insert(TextureMapping {
5001 texture: sampling.image,
5002 sampler: Some(sampling.sampler),
5003 });
5004 }
5005 hash_map::Entry::Occupied(e) => {
5006 if e.get().sampler != Some(sampling.sampler) {
5007 log::error!("Conflicting samplers for {}", e.key());
5008 return Err(Error::ImageMultipleSamplers);
5009 }
5010 }
5011 }
5012 }
5013
5014 let mut push_constant_info = None;
5015 for (handle, var) in self.module.global_variables.iter() {
5016 if info[handle].is_empty() {
5017 continue;
5018 }
5019 match self.module.types[var.ty].inner {
5020 TypeInner::Image { .. } => {
5021 let tex_name = self.reflection_names_globals[&handle].clone();
5022 match texture_mapping.entry(tex_name) {
5023 hash_map::Entry::Vacant(v) => {
5024 v.insert(TextureMapping {
5025 texture: handle,
5026 sampler: None,
5027 });
5028 }
5029 hash_map::Entry::Occupied(_) => {
5030 // already used with a sampler, do nothing
5031 }
5032 }
5033 }
5034 _ => match var.space {
5035 crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => {
5036 let name = self.reflection_names_globals[&handle].clone();
5037 uniforms.insert(handle, name);
5038 }
5039 crate::AddressSpace::PushConstant => {
5040 let name = self.reflection_names_globals[&handle].clone();
5041 push_constant_info = Some((name, var.ty));
5042 }
5043 _ => (),
5044 },
5045 }
5046 }
5047
5048 let mut push_constant_segments = Vec::new();
5049 let mut push_constant_items = vec![];
5050
5051 if let Some((name, ty)) = push_constant_info {
5052 // We don't have a layouter available to us, so we need to create one.
5053 //
5054 // This is potentially a bit wasteful, but the set of types in the program
5055 // shouldn't be too large.
5056 let mut layouter = proc::Layouter::default();
5057 layouter.update(self.module.to_ctx()).unwrap();
5058
5059 // We start with the name of the binding itself.
5060 push_constant_segments.push(name);
5061
5062 // We then recursively collect all the uniform fields of the push constant.
5063 self.collect_push_constant_items(
5064 ty,
5065 &mut push_constant_segments,
5066 &layouter,
5067 &mut 0,
5068 &mut push_constant_items,
5069 );
5070 }
5071
5072 Ok(ReflectionInfo {
5073 texture_mapping,
5074 uniforms,
5075 varying: mem::take(&mut self.varying),
5076 push_constant_items,
5077 clip_distance_count: self.clip_distance_count,
5078 })
5079 }
5080
5081 fn collect_push_constant_items(
5082 &mut self,
5083 ty: Handle<crate::Type>,
5084 segments: &mut Vec<String>,
5085 layouter: &proc::Layouter,
5086 offset: &mut u32,
5087 items: &mut Vec<PushConstantItem>,
5088 ) {
5089 // At this point in the recursion, `segments` contains the path
5090 // needed to access `ty` from the root.
5091
5092 let layout = &layouter[ty];
5093 *offset = layout.alignment.round_up(*offset);
5094 match self.module.types[ty].inner {
5095 // All these types map directly to GL uniforms.
5096 TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => {
5097 // Build the full name, by combining all current segments.
5098 let name: String = segments.iter().map(String::as_str).collect();
5099 items.push(PushConstantItem {
5100 access_path: name,
5101 offset: *offset,
5102 ty,
5103 });
5104 *offset += layout.size;
5105 }
5106 // Arrays are recursed into.
5107 TypeInner::Array { base, size, .. } => {
5108 let crate::ArraySize::Constant(count) = size else {
5109 unreachable!("Cannot have dynamic arrays in push constants");
5110 };
5111
5112 for i in 0..count.get() {
5113 // Add the array accessor and recurse.
5114 segments.push(format!("[{i}]"));
5115 self.collect_push_constant_items(base, segments, layouter, offset, items);
5116 segments.pop();
5117 }
5118
5119 // Ensure the stride is kept by rounding up to the alignment.
5120 *offset = layout.alignment.round_up(*offset)
5121 }
5122 TypeInner::Struct { ref members, .. } => {
5123 for (index, member) in members.iter().enumerate() {
5124 // Add struct accessor and recurse.
5125 segments.push(format!(
5126 ".{}",
5127 self.names[&NameKey::StructMember(ty, index as u32)]
5128 ));
5129 self.collect_push_constant_items(member.ty, segments, layouter, offset, items);
5130 segments.pop();
5131 }
5132
5133 // Ensure ending padding is kept by rounding up to the alignment.
5134 *offset = layout.alignment.round_up(*offset)
5135 }
5136 _ => unreachable!(),
5137 }
5138 }
5139}
5140
5141/// Structure returned by [`glsl_scalar`]
5142///
5143/// It contains both a prefix used in other types and the full type name
5144struct ScalarString<'a> {
5145 /// The prefix used to compose other types
5146 prefix: &'a str,
5147 /// The name of the scalar type
5148 full: &'a str,
5149}
5150
5151/// Helper function that returns scalar related strings
5152///
5153/// Check [`ScalarString`] for the information provided
5154///
5155/// # Errors
5156/// If a [`Float`](crate::ScalarKind::Float) with an width that isn't 4 or 8
5157const fn glsl_scalar(scalar: crate::Scalar) -> Result<ScalarString<'static>, Error> {
5158 use crate::ScalarKind as Sk;
5159
5160 Ok(match scalar.kind {
5161 Sk::Sint => ScalarString {
5162 prefix: "i",
5163 full: "int",
5164 },
5165 Sk::Uint => ScalarString {
5166 prefix: "u",
5167 full: "uint",
5168 },
5169 Sk::Float => match scalar.width {
5170 4 => ScalarString {
5171 prefix: "",
5172 full: "float",
5173 },
5174 8 => ScalarString {
5175 prefix: "d",
5176 full: "double",
5177 },
5178 _ => return Err(Error::UnsupportedScalar(scalar)),
5179 },
5180 Sk::Bool => ScalarString {
5181 prefix: "b",
5182 full: "bool",
5183 },
5184 Sk::AbstractInt | Sk::AbstractFloat => {
5185 return Err(Error::UnsupportedScalar(scalar));
5186 }
5187 })
5188}
5189
5190/// Helper function that returns the glsl variable name for a builtin
5191const fn glsl_built_in(built_in: crate::BuiltIn, options: VaryingOptions) -> &'static str {
5192 use crate::BuiltIn as Bi;
5193
5194 match built_in {
5195 Bi::Position { .. } => {
5196 if options.output {
5197 "gl_Position"
5198 } else {
5199 "gl_FragCoord"
5200 }
5201 }
5202 Bi::ViewIndex if options.targeting_webgl => "int(gl_ViewID_OVR)",
5203 Bi::ViewIndex => "gl_ViewIndex",
5204 // vertex
5205 Bi::BaseInstance => "uint(gl_BaseInstance)",
5206 Bi::BaseVertex => "uint(gl_BaseVertex)",
5207 Bi::ClipDistance => "gl_ClipDistance",
5208 Bi::CullDistance => "gl_CullDistance",
5209 Bi::InstanceIndex => {
5210 if options.draw_parameters {
5211 "(uint(gl_InstanceID) + uint(gl_BaseInstanceARB))"
5212 } else {
5213 // Must match FIRST_INSTANCE_BINDING
5214 "(uint(gl_InstanceID) + naga_vs_first_instance)"
5215 }
5216 }
5217 Bi::PointSize => "gl_PointSize",
5218 Bi::VertexIndex => "uint(gl_VertexID)",
5219 Bi::DrawID => "gl_DrawID",
5220 // fragment
5221 Bi::FragDepth => "gl_FragDepth",
5222 Bi::PointCoord => "gl_PointCoord",
5223 Bi::FrontFacing => "gl_FrontFacing",
5224 Bi::PrimitiveIndex => "uint(gl_PrimitiveID)",
5225 Bi::SampleIndex => "gl_SampleID",
5226 Bi::SampleMask => {
5227 if options.output {
5228 "gl_SampleMask"
5229 } else {
5230 "gl_SampleMaskIn"
5231 }
5232 }
5233 // compute
5234 Bi::GlobalInvocationId => "gl_GlobalInvocationID",
5235 Bi::LocalInvocationId => "gl_LocalInvocationID",
5236 Bi::LocalInvocationIndex => "gl_LocalInvocationIndex",
5237 Bi::WorkGroupId => "gl_WorkGroupID",
5238 Bi::WorkGroupSize => "gl_WorkGroupSize",
5239 Bi::NumWorkGroups => "gl_NumWorkGroups",
5240 // subgroup
5241 Bi::NumSubgroups => "gl_NumSubgroups",
5242 Bi::SubgroupId => "gl_SubgroupID",
5243 Bi::SubgroupSize => "gl_SubgroupSize",
5244 Bi::SubgroupInvocationId => "gl_SubgroupInvocationID",
5245 }
5246}
5247
5248/// Helper function that returns the string corresponding to the address space
5249const fn glsl_storage_qualifier(space: crate::AddressSpace) -> Option<&'static str> {
5250 use crate::AddressSpace as As;
5251
5252 match space {
5253 As::Function => None,
5254 As::Private => None,
5255 As::Storage { .. } => Some("buffer"),
5256 As::Uniform => Some("uniform"),
5257 As::Handle => Some("uniform"),
5258 As::WorkGroup => Some("shared"),
5259 As::PushConstant => Some("uniform"),
5260 }
5261}
5262
5263/// Helper function that returns the string corresponding to the glsl interpolation qualifier
5264const fn glsl_interpolation(interpolation: crate::Interpolation) -> &'static str {
5265 use crate::Interpolation as I;
5266
5267 match interpolation {
5268 I::Perspective => "smooth",
5269 I::Linear => "noperspective",
5270 I::Flat => "flat",
5271 }
5272}
5273
5274/// Return the GLSL auxiliary qualifier for the given sampling value.
5275const fn glsl_sampling(sampling: crate::Sampling) -> BackendResult<Option<&'static str>> {
5276 use crate::Sampling as S;
5277
5278 Ok(match sampling {
5279 S::First => return Err(Error::FirstSamplingNotSupported),
5280 S::Center | S::Either => None,
5281 S::Centroid => Some("centroid"),
5282 S::Sample => Some("sample"),
5283 })
5284}
5285
5286/// Helper function that returns the glsl dimension string of [`ImageDimension`](crate::ImageDimension)
5287const fn glsl_dimension(dim: crate::ImageDimension) -> &'static str {
5288 use crate::ImageDimension as IDim;
5289
5290 match dim {
5291 IDim::D1 => "1D",
5292 IDim::D2 => "2D",
5293 IDim::D3 => "3D",
5294 IDim::Cube => "Cube",
5295 }
5296}
5297
5298/// Helper function that returns the glsl storage format string of [`StorageFormat`](crate::StorageFormat)
5299fn glsl_storage_format(format: crate::StorageFormat) -> Result<&'static str, Error> {
5300 use crate::StorageFormat as Sf;
5301
5302 Ok(match format {
5303 Sf::R8Unorm => "r8",
5304 Sf::R8Snorm => "r8_snorm",
5305 Sf::R8Uint => "r8ui",
5306 Sf::R8Sint => "r8i",
5307 Sf::R16Uint => "r16ui",
5308 Sf::R16Sint => "r16i",
5309 Sf::R16Float => "r16f",
5310 Sf::Rg8Unorm => "rg8",
5311 Sf::Rg8Snorm => "rg8_snorm",
5312 Sf::Rg8Uint => "rg8ui",
5313 Sf::Rg8Sint => "rg8i",
5314 Sf::R32Uint => "r32ui",
5315 Sf::R32Sint => "r32i",
5316 Sf::R32Float => "r32f",
5317 Sf::Rg16Uint => "rg16ui",
5318 Sf::Rg16Sint => "rg16i",
5319 Sf::Rg16Float => "rg16f",
5320 Sf::Rgba8Unorm => "rgba8",
5321 Sf::Rgba8Snorm => "rgba8_snorm",
5322 Sf::Rgba8Uint => "rgba8ui",
5323 Sf::Rgba8Sint => "rgba8i",
5324 Sf::Rgb10a2Uint => "rgb10_a2ui",
5325 Sf::Rgb10a2Unorm => "rgb10_a2",
5326 Sf::Rg11b10Ufloat => "r11f_g11f_b10f",
5327 Sf::R64Uint => "r64ui",
5328 Sf::Rg32Uint => "rg32ui",
5329 Sf::Rg32Sint => "rg32i",
5330 Sf::Rg32Float => "rg32f",
5331 Sf::Rgba16Uint => "rgba16ui",
5332 Sf::Rgba16Sint => "rgba16i",
5333 Sf::Rgba16Float => "rgba16f",
5334 Sf::Rgba32Uint => "rgba32ui",
5335 Sf::Rgba32Sint => "rgba32i",
5336 Sf::Rgba32Float => "rgba32f",
5337 Sf::R16Unorm => "r16",
5338 Sf::R16Snorm => "r16_snorm",
5339 Sf::Rg16Unorm => "rg16",
5340 Sf::Rg16Snorm => "rg16_snorm",
5341 Sf::Rgba16Unorm => "rgba16",
5342 Sf::Rgba16Snorm => "rgba16_snorm",
5343
5344 Sf::Bgra8Unorm => {
5345 return Err(Error::Custom(
5346 "Support format BGRA8 is not implemented".into(),
5347 ))
5348 }
5349 })
5350}
5351
5352fn is_value_init_supported(module: &crate::Module, ty: Handle<crate::Type>) -> bool {
5353 match module.types[ty].inner {
5354 TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => true,
5355 TypeInner::Array { base, size, .. } => {
5356 size != crate::ArraySize::Dynamic && is_value_init_supported(module, base)
5357 }
5358 TypeInner::Struct { ref members, .. } => members
5359 .iter()
5360 .all(|member| is_value_init_supported(module, member.ty)),
5361 _ => false,
5362 }
5363}