naga/proc/overloads/
constructor_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! A set of type constructors, represented as a bitset.

use crate::ir;
use crate::proc::overloads::one_bits_iter::OneBitsIter;

bitflags::bitflags! {
    /// A set of type constructors.
    #[derive(Copy, Clone, Debug, PartialEq)]
    pub(crate) struct ConstructorSet: u16 {
        const SCALAR = 1 << 0;
        const VEC2 = 1 << 1;
        const VEC3 = 1 << 2;
        const VEC4 = 1 << 3;
        const MAT2X2 = 1 << 4;
        const MAT2X3 = 1 << 5;
        const MAT2X4 = 1 << 6;
        const MAT3X2 = 1 << 7;
        const MAT3X3 = 1 << 8;
        const MAT3X4 = 1 << 9;
        const MAT4X2 = 1 << 10;
        const MAT4X3 = 1 << 11;
        const MAT4X4 = 1 << 12;

        const VECN = Self::VEC2.bits()
            | Self::VEC3.bits()
            | Self::VEC4.bits();
    }
}

impl ConstructorSet {
    /// Return the single-member set containing `inner`'s constructor.
    pub const fn singleton(inner: &ir::TypeInner) -> ConstructorSet {
        use ir::TypeInner as Ti;
        use ir::VectorSize as Vs;
        match *inner {
            Ti::Scalar(_) => Self::SCALAR,
            Ti::Vector { size, scalar: _ } => match size {
                Vs::Bi => Self::VEC2,
                Vs::Tri => Self::VEC3,
                Vs::Quad => Self::VEC4,
            },
            Ti::Matrix {
                columns,
                rows,
                scalar: _,
            } => match (columns, rows) {
                (Vs::Bi, Vs::Bi) => Self::MAT2X2,
                (Vs::Bi, Vs::Tri) => Self::MAT2X3,
                (Vs::Bi, Vs::Quad) => Self::MAT2X4,
                (Vs::Tri, Vs::Bi) => Self::MAT3X2,
                (Vs::Tri, Vs::Tri) => Self::MAT3X3,
                (Vs::Tri, Vs::Quad) => Self::MAT3X4,
                (Vs::Quad, Vs::Bi) => Self::MAT4X2,
                (Vs::Quad, Vs::Tri) => Self::MAT4X3,
                (Vs::Quad, Vs::Quad) => Self::MAT4X4,
            },
            _ => Self::empty(),
        }
    }

    pub const fn is_singleton(self) -> bool {
        self.bits().is_power_of_two()
    }

    /// Return an iterator over this set's members.
    ///
    /// Members are produced as singleton, in order from most general to least.
    pub fn members(self) -> impl Iterator<Item = ConstructorSet> {
        OneBitsIter::new(self.bits() as u64).map(|bit| Self::from_bits(bit as u16).unwrap())
    }

    /// Return the size of the sole element of `self`.
    ///
    /// # Panics
    ///
    /// Panic if `self` is not a singleton.
    pub fn size(self) -> ConstructorSize {
        use ir::VectorSize as Vs;
        use ConstructorSize as Cs;

        match self {
            ConstructorSet::SCALAR => Cs::Scalar,
            ConstructorSet::VEC2 => Cs::Vector(Vs::Bi),
            ConstructorSet::VEC3 => Cs::Vector(Vs::Tri),
            ConstructorSet::VEC4 => Cs::Vector(Vs::Quad),
            ConstructorSet::MAT2X2 => Cs::Matrix {
                columns: Vs::Bi,
                rows: Vs::Bi,
            },
            ConstructorSet::MAT2X3 => Cs::Matrix {
                columns: Vs::Bi,
                rows: Vs::Tri,
            },
            ConstructorSet::MAT2X4 => Cs::Matrix {
                columns: Vs::Bi,
                rows: Vs::Quad,
            },
            ConstructorSet::MAT3X2 => Cs::Matrix {
                columns: Vs::Tri,
                rows: Vs::Bi,
            },
            ConstructorSet::MAT3X3 => Cs::Matrix {
                columns: Vs::Tri,
                rows: Vs::Tri,
            },
            ConstructorSet::MAT3X4 => Cs::Matrix {
                columns: Vs::Tri,
                rows: Vs::Quad,
            },
            ConstructorSet::MAT4X2 => Cs::Matrix {
                columns: Vs::Quad,
                rows: Vs::Bi,
            },
            ConstructorSet::MAT4X3 => Cs::Matrix {
                columns: Vs::Quad,
                rows: Vs::Tri,
            },
            ConstructorSet::MAT4X4 => Cs::Matrix {
                columns: Vs::Quad,
                rows: Vs::Quad,
            },
            _ => unreachable!("ConstructorSet was not a singleton"),
        }
    }
}

/// The sizes a member of [`ConstructorSet`] might have.
#[derive(Clone, Copy)]
pub enum ConstructorSize {
    /// The constructor is [`SCALAR`].
    ///
    /// [`SCALAR`]: ConstructorSet::SCALAR
    Scalar,

    /// The constructor is `VECN` for some `N`.
    Vector(ir::VectorSize),

    /// The constructor is `MATCXR` for some `C` and `R`.
    Matrix {
        columns: ir::VectorSize,
        rows: ir::VectorSize,
    },
}

impl ConstructorSize {
    /// Construct a [`TypeInner`] for a type with this size and the given `scalar`.
    ///
    /// [`TypeInner`]: ir::TypeInner
    pub const fn to_inner(self, scalar: ir::Scalar) -> ir::TypeInner {
        match self {
            Self::Scalar => ir::TypeInner::Scalar(scalar),
            Self::Vector(size) => ir::TypeInner::Vector { size, scalar },
            Self::Matrix { columns, rows } => ir::TypeInner::Matrix {
                columns,
                rows,
                scalar,
            },
        }
    }
}

macro_rules! constructor_set {
    ( $( $constr:ident )|* ) => {
        {
            use $crate::proc::overloads::constructor_set::ConstructorSet;
            ConstructorSet::empty()
                $(
                    .union(ConstructorSet::$constr)
                )*
        }
    }
}

pub(in crate::proc::overloads) use constructor_set;