wgpu/api/render_pipeline.rs
1use core::num::NonZeroU32;
2
3use crate::*;
4
5/// Handle to a rendering (graphics) pipeline.
6///
7/// A `RenderPipeline` object represents a graphics pipeline and its stages, bindings, vertex
8/// buffers and targets. It can be created with [`Device::create_render_pipeline`].
9///
10/// Corresponds to [WebGPU `GPURenderPipeline`](https://gpuweb.github.io/gpuweb/#render-pipeline).
11#[derive(Debug, Clone)]
12pub struct RenderPipeline {
13 pub(crate) inner: dispatch::DispatchRenderPipeline,
14}
15#[cfg(send_sync)]
16static_assertions::assert_impl_all!(RenderPipeline: Send, Sync);
17
18crate::cmp::impl_eq_ord_hash_proxy!(RenderPipeline => .inner);
19
20impl RenderPipeline {
21 /// Get an object representing the bind group layout at a given index.
22 ///
23 /// If this pipeline was created with a [default layout][RenderPipelineDescriptor::layout], then
24 /// bind groups created with the returned `BindGroupLayout` can only be used with this pipeline.
25 ///
26 /// This method will raise a validation error if there is no bind group layout at `index`.
27 pub fn get_bind_group_layout(&self, index: u32) -> BindGroupLayout {
28 let layout = self.inner.get_bind_group_layout(index);
29 BindGroupLayout { inner: layout }
30 }
31
32 #[cfg(custom)]
33 /// Returns custom implementation of RenderPipeline (if custom backend and is internally T)
34 pub fn as_custom<T: custom::RenderPipelineInterface>(&self) -> Option<&T> {
35 self.inner.as_custom()
36 }
37}
38
39/// Specifies an interpretation of the bytes of a vertex buffer as vertex attributes.
40///
41/// Use this in a [`RenderPipelineDescriptor`] to describe the format of the vertex buffers that
42/// are passed to [`RenderPass::set_vertex_buffer()`].
43///
44/// Corresponds to [WebGPU `GPUVertexBufferLayout`](
45/// https://gpuweb.github.io/gpuweb/#dictdef-gpuvertexbufferlayout).
46///
47/// # Example
48///
49/// The following example defines a `struct` with three fields,
50/// and a [`VertexBufferLayout`] that contains [`VertexAttribute`]s for each field,
51/// using the [`vertex_attr_array!`] macro to compute attribute offsets:
52///
53/// ```
54/// #[repr(C, packed)]
55/// struct Vertex {
56/// foo: [f32; 2],
57/// bar: f32,
58/// baz: [u16; 4],
59/// }
60///
61/// impl Vertex {
62/// /// Layout to use with a buffer whose contents are a `[Vertex]`.
63/// pub const LAYOUT: wgpu::VertexBufferLayout<'static> = wgpu::VertexBufferLayout {
64/// array_stride: size_of::<Self>() as wgpu::BufferAddress,
65/// step_mode: wgpu::VertexStepMode::Vertex,
66/// attributes: &wgpu::vertex_attr_array![
67/// 0 => Float32x2,
68/// 1 => Float32,
69/// 2 => Uint16x4,
70/// ],
71/// };
72/// }
73///
74/// # assert_eq!(Vertex::LAYOUT.attributes[2].offset, Vertex::LAYOUT.array_stride - 2 * 4);
75#[derive(Clone, Debug, Hash, Eq, PartialEq)]
76pub struct VertexBufferLayout<'a> {
77 /// The stride, in bytes, between elements of this buffer (between vertices).
78 ///
79 /// This must be a multiple of [`VERTEX_ALIGNMENT`].
80 pub array_stride: BufferAddress,
81 /// How often this vertex buffer is "stepped" forward.
82 pub step_mode: VertexStepMode,
83 /// The list of attributes which comprise a single vertex.
84 pub attributes: &'a [VertexAttribute],
85}
86static_assertions::assert_impl_all!(VertexBufferLayout<'_>: Send, Sync);
87
88/// Describes the vertex processing in a render pipeline.
89///
90/// For use in [`RenderPipelineDescriptor`].
91///
92/// Corresponds to [WebGPU `GPUVertexState`](
93/// https://gpuweb.github.io/gpuweb/#dictdef-gpuvertexstate).
94#[derive(Clone, Debug)]
95pub struct VertexState<'a> {
96 /// The compiled shader module for this stage.
97 pub module: &'a ShaderModule,
98 /// The name of the entry point in the compiled shader to use.
99 ///
100 /// If [`Some`], there must be a vertex-stage shader entry point with this name in `module`.
101 /// Otherwise, expect exactly one vertex-stage entry point in `module`, which will be
102 /// selected.
103 // NOTE: keep phrasing in sync. with `ComputePipelineDescriptor::entry_point`
104 // NOTE: keep phrasing in sync. with `FragmentState::entry_point`
105 pub entry_point: Option<&'a str>,
106 /// Advanced options for when this pipeline is compiled
107 ///
108 /// This implements `Default`, and for most users can be set to `Default::default()`
109 pub compilation_options: PipelineCompilationOptions<'a>,
110 /// The format of any vertex buffers used with this pipeline via
111 /// [`RenderPass::set_vertex_buffer()`].
112 ///
113 /// The attribute locations and types specified in this layout must match the
114 /// locations and types of the inputs to the `entry_point` function.
115 pub buffers: &'a [VertexBufferLayout<'a>],
116}
117#[cfg(send_sync)]
118static_assertions::assert_impl_all!(VertexState<'_>: Send, Sync);
119
120/// Describes the fragment processing in a render pipeline.
121///
122/// For use in [`RenderPipelineDescriptor`].
123///
124/// Corresponds to [WebGPU `GPUFragmentState`](
125/// https://gpuweb.github.io/gpuweb/#dictdef-gpufragmentstate).
126#[derive(Clone, Debug)]
127pub struct FragmentState<'a> {
128 /// The compiled shader module for this stage.
129 pub module: &'a ShaderModule,
130 /// The name of the entry point in the compiled shader to use.
131 ///
132 /// If [`Some`], there must be a `@fragment` shader entry point with this name in `module`.
133 /// Otherwise, expect exactly one fragment-stage entry point in `module`, which will be
134 /// selected.
135 // NOTE: keep phrasing in sync. with `ComputePipelineDescriptor::entry_point`
136 // NOTE: keep phrasing in sync. with `VertexState::entry_point`
137 pub entry_point: Option<&'a str>,
138 /// Advanced options for when this pipeline is compiled
139 ///
140 /// This implements `Default`, and for most users can be set to `Default::default()`
141 pub compilation_options: PipelineCompilationOptions<'a>,
142 /// The color state of the render targets.
143 pub targets: &'a [Option<ColorTargetState>],
144}
145#[cfg(send_sync)]
146static_assertions::assert_impl_all!(FragmentState<'_>: Send, Sync);
147
148/// Describes the task shader stage in a mesh shader pipeline.
149///
150/// For use in [`MeshPipelineDescriptor`]
151#[derive(Clone, Debug)]
152pub struct TaskState<'a> {
153 /// The compiled shader module for this stage.
154 pub module: &'a ShaderModule,
155
156 /// The name of the task shader entry point in the shader module to use.
157 ///
158 /// If [`Some`], there must be a task shader entry point with the given name
159 /// in `module`. Otherwise, there must be exactly one task shader entry
160 /// point in `module`, which will be selected.
161 pub entry_point: Option<&'a str>,
162
163 /// Advanced options for when this pipeline is compiled.
164 ///
165 /// This implements `Default`, and for most users can be set to `Default::default()`
166 pub compilation_options: PipelineCompilationOptions<'a>,
167}
168#[cfg(send_sync)]
169static_assertions::assert_impl_all!(TaskState<'_>: Send, Sync);
170
171/// Describes the mesh shader stage in a mesh shader pipeline.
172///
173/// For use in [`MeshPipelineDescriptor`]
174#[derive(Clone, Debug)]
175pub struct MeshState<'a> {
176 /// The compiled shader module for this stage.
177 pub module: &'a ShaderModule,
178 /// The name of the entry point in the compiled shader to use.
179 ///
180 /// If [`Some`], there must be a vertex-stage shader entry point with this name in `module`.
181 /// Otherwise, expect exactly one vertex-stage entry point in `module`, which will be
182 /// selected.
183 pub entry_point: Option<&'a str>,
184 /// Advanced options for when this pipeline is compiled
185 ///
186 /// This implements `Default`, and for most users can be set to `Default::default()`
187 pub compilation_options: PipelineCompilationOptions<'a>,
188}
189#[cfg(send_sync)]
190static_assertions::assert_impl_all!(MeshState<'_>: Send, Sync);
191
192/// Describes a render (graphics) pipeline.
193///
194/// For use with [`Device::create_render_pipeline`].
195///
196/// Corresponds to [WebGPU `GPURenderPipelineDescriptor`](
197/// https://gpuweb.github.io/gpuweb/#dictdef-gpurenderpipelinedescriptor).
198#[derive(Clone, Debug)]
199pub struct RenderPipelineDescriptor<'a> {
200 /// Debug label of the pipeline. This will show up in graphics debuggers for easy identification.
201 pub label: Label<'a>,
202 /// The layout of bind groups for this pipeline.
203 ///
204 /// If this is set, then [`Device::create_render_pipeline`] will raise a validation error if
205 /// the layout doesn't match what the shader module(s) expect.
206 ///
207 /// Using the same [`PipelineLayout`] for many [`RenderPipeline`] or [`ComputePipeline`]
208 /// pipelines guarantees that you don't have to rebind any resources when switching between
209 /// those pipelines.
210 ///
211 /// ## Default pipeline layout
212 ///
213 /// If `layout` is `None`, then the pipeline has a [default layout] created and used instead.
214 /// The default layout is deduced from the shader modules.
215 ///
216 /// You can use [`RenderPipeline::get_bind_group_layout`] to create bind groups for use with the
217 /// default layout. However, these bind groups cannot be used with any other pipelines. This is
218 /// convenient for simple pipelines, but using an explicit layout is recommended in most cases.
219 ///
220 /// [default layout]: https://www.w3.org/TR/webgpu/#default-pipeline-layout
221 pub layout: Option<&'a PipelineLayout>,
222 /// The compiled vertex stage, its entry point, and the input buffers layout.
223 pub vertex: VertexState<'a>,
224 /// The properties of the pipeline at the primitive assembly and rasterization level.
225 pub primitive: PrimitiveState,
226 /// The effect of draw calls on the depth and stencil aspects of the output target, if any.
227 pub depth_stencil: Option<DepthStencilState>,
228 /// The multi-sampling properties of the pipeline.
229 pub multisample: MultisampleState,
230 /// The compiled fragment stage, its entry point, and the color targets.
231 pub fragment: Option<FragmentState<'a>>,
232 /// If the pipeline will be used with a multiview render pass, this indicates what multiview
233 /// mask the render pass will be used with. The masks must match exactly.
234 ///
235 /// For example, if you wish to render to the first 2 layers, you would use 3=0b11. If you
236 /// wanted to render to only the 2nd layer, you would use 2=0b10. If you aren't using
237 /// multiview this should be `None`.
238 pub multiview_mask: Option<NonZeroU32>,
239 /// The pipeline cache to use when creating this pipeline.
240 pub cache: Option<&'a PipelineCache>,
241}
242#[cfg(send_sync)]
243static_assertions::assert_impl_all!(RenderPipelineDescriptor<'_>: Send, Sync);
244
245/// Describes a mesh shader (graphics) pipeline.
246///
247/// For use with [`Device::create_mesh_pipeline`]. A mesh pipeline is very much
248/// like a render pipeline, except that instead of [`RenderPass::draw`] it is
249/// invoked with [`RenderPass::draw_mesh_tasks`], and instead of a vertex shader
250/// and a fragment shader:
251///
252/// - [`task`] specifies an optional task shader entry point, which determines how
253/// many groups of mesh shaders to dispatch.
254///
255/// - [`mesh`] specifies a mesh shader entry point, which generates groups of
256/// primitives to draw
257///
258/// - [`fragment`] specifies as fragment shader for drawing those primitives,
259/// just like in an ordinary render pipeline.
260///
261/// The key difference is that, whereas a vertex shader is invoked on the
262/// elements of vertex buffers, the task shader gets to decide how many mesh
263/// shader workgroups to make, and then each mesh shader workgroup gets to
264/// decide which primitives it wants to generate, and what their vertex
265/// attributes are. Task and mesh shaders can use whatever they please as
266/// inputs, like a compute shader. However, they cannot use specialized vertex
267/// or index buffers.
268///
269/// A mesh pipeline is invoked by [`RenderPass::draw_mesh_tasks`], which looks
270/// like a compute shader dispatch with [`ComputePass::dispatch_workgroups`]:
271/// you pass `x`, `y`, and `z` values indicating the number of task shaders to
272/// invoke in parallel. The output value of the first thread in a task shader
273/// workgroup determines how many mesh workgroups should be dispatched from there.
274/// Those mesh workgroups also get a special payload passed from the task shader.
275///
276/// If the task shader is omitted, then the (`x`, `y`, `z`) parameters to
277/// `draw_mesh_tasks` are used to decide how many invocations of the mesh shader
278/// to invoke directly, without a task payload.
279///
280/// [vertex formats]: wgpu_types::VertexFormat
281/// [`task`]: Self::task
282/// [`mesh`]: Self::mesh
283/// [`fragment`]: Self::fragment
284#[derive(Clone, Debug)]
285pub struct MeshPipelineDescriptor<'a> {
286 /// Debug label of the pipeline. This will show up in graphics debuggers for easy identification.
287 pub label: Label<'a>,
288 /// The layout of bind groups for this pipeline.
289 ///
290 /// If this is set, then [`Device::create_render_pipeline`] will raise a validation error if
291 /// the layout doesn't match what the shader module(s) expect.
292 ///
293 /// Using the same [`PipelineLayout`] for many [`RenderPipeline`] or [`ComputePipeline`]
294 /// pipelines guarantees that you don't have to rebind any resources when switching between
295 /// those pipelines.
296 ///
297 /// ## Default pipeline layout
298 ///
299 /// If `layout` is `None`, then the pipeline has a [default layout] created and used instead.
300 /// The default layout is deduced from the shader modules.
301 ///
302 /// You can use [`RenderPipeline::get_bind_group_layout`] to create bind groups for use with the
303 /// default layout. However, these bind groups cannot be used with any other pipelines. This is
304 /// convenient for simple pipelines, but using an explicit layout is recommended in most cases.
305 ///
306 /// [default layout]: https://www.w3.org/TR/webgpu/#default-pipeline-layout
307 pub layout: Option<&'a PipelineLayout>,
308
309 /// The mesh pipeline's task shader.
310 ///
311 /// If this is `None`, the mesh pipeline has no task shader. Executing a
312 /// mesh drawing command simply dispatches a grid of mesh shaders directly.
313 ///
314 /// [`draw_mesh_tasks`]: RenderPass::draw_mesh_tasks
315 pub task: Option<TaskState<'a>>,
316
317 /// The compiled mesh stage and its entry point
318 pub mesh: MeshState<'a>,
319 /// The properties of the pipeline at the primitive assembly and rasterization level.
320 pub primitive: PrimitiveState,
321 /// The effect of draw calls on the depth and stencil aspects of the output target, if any.
322 pub depth_stencil: Option<DepthStencilState>,
323 /// The multi-sampling properties of the pipeline.
324 pub multisample: MultisampleState,
325 /// The compiled fragment stage, its entry point, and the color targets.
326 pub fragment: Option<FragmentState<'a>>,
327 /// If the pipeline will be used with a multiview render pass, this indicates how many array
328 /// layers the attachments will have.
329 pub multiview: Option<NonZeroU32>,
330 /// The pipeline cache to use when creating this pipeline.
331 pub cache: Option<&'a PipelineCache>,
332}
333#[cfg(send_sync)]
334static_assertions::assert_impl_all!(MeshPipelineDescriptor<'_>: Send, Sync);