naga/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
/*! Universal shader translator.

The central structure of the crate is [`Module`]. A `Module` contains:

- [`Function`]s, which have arguments, a return type, local variables, and a body,

- [`EntryPoint`]s, which are specialized functions that can serve as the entry
  point for pipeline stages like vertex shading or fragment shading,

- [`Constant`]s and [`GlobalVariable`]s used by `EntryPoint`s and `Function`s, and

- [`Type`]s used by the above.

The body of an `EntryPoint` or `Function` is represented using two types:

- An [`Expression`] produces a value, but has no side effects or control flow.
  `Expressions` include variable references, unary and binary operators, and so
  on.

- A [`Statement`] can have side effects and structured control flow.
  `Statement`s do not produce a value, other than by storing one in some
  designated place. `Statements` include blocks, conditionals, and loops, but also
  operations that have side effects, like stores and function calls.

`Statement`s form a tree, with pointers into the DAG of `Expression`s.

Restricting side effects to statements simplifies analysis and code generation.
A Naga backend can generate code to evaluate an `Expression` however and
whenever it pleases, as long as it is certain to observe the side effects of all
previously executed `Statement`s.

Many `Statement` variants use the [`Block`] type, which is `Vec<Statement>`,
with optional span info, representing a series of statements executed in order. The body of an
`EntryPoint`s or `Function` is a `Block`, and `Statement` has a
[`Block`][Statement::Block] variant.

## Function Calls

Naga's representation of function calls is unusual. Most languages treat
function calls as expressions, but because calls may have side effects, Naga
represents them as a kind of statement, [`Statement::Call`]. If the function
returns a value, a call statement designates a particular [`Expression::CallResult`]
expression to represent its return value, for use by subsequent statements and
expressions.

## `Expression` evaluation time

It is essential to know when an [`Expression`] should be evaluated, because its
value may depend on previous [`Statement`]s' effects. But whereas the order of
execution for a tree of `Statement`s is apparent from its structure, it is not
so clear for `Expressions`, since an expression may be referred to by any number
of `Statement`s and other `Expression`s.

Naga's rules for when `Expression`s are evaluated are as follows:

-   [`Literal`], [`Constant`], and [`ZeroValue`] expressions are
    considered to be implicitly evaluated before execution begins.

-   [`FunctionArgument`] and [`LocalVariable`] expressions are considered
    implicitly evaluated upon entry to the function to which they belong.
    Function arguments cannot be assigned to, and `LocalVariable` expressions
    produce a *pointer to* the variable's value (for use with [`Load`] and
    [`Store`]). Neither varies while the function executes, so it suffices to
    consider these expressions evaluated once on entry.

-   Similarly, [`GlobalVariable`] expressions are considered implicitly
    evaluated before execution begins, since their value does not change while
    code executes, for one of two reasons:

    -   Most `GlobalVariable` expressions produce a pointer to the variable's
        value, for use with [`Load`] and [`Store`], as `LocalVariable`
        expressions do. Although the variable's value may change, its address
        does not.

    -   A `GlobalVariable` expression referring to a global in the
        [`AddressSpace::Handle`] address space produces the value directly, not
        a pointer. Such global variables hold opaque types like shaders or
        images, and cannot be assigned to.

-   A [`CallResult`] expression that is the `result` of a [`Statement::Call`],
    representing the call's return value, is evaluated when the `Call` statement
    is executed.

-   Similarly, an [`AtomicResult`] expression that is the `result` of an
    [`Atomic`] statement, representing the result of the atomic operation, is
    evaluated when the `Atomic` statement is executed.

-   A [`RayQueryProceedResult`] expression, which is a boolean
    indicating if the ray query is finished, is evaluated when the
    [`RayQuery`] statement whose [`Proceed::result`] points to it is
    executed.

-   All other expressions are evaluated when the (unique) [`Statement::Emit`]
    statement that covers them is executed.

Now, strictly speaking, not all `Expression` variants actually care when they're
evaluated. For example, you can evaluate a [`BinaryOperator::Add`] expression
any time you like, as long as you give it the right operands. It's really only a
very small set of expressions that are affected by timing:

-   [`Load`], [`ImageSample`], and [`ImageLoad`] expressions are influenced by
    stores to the variables or images they access, and must execute at the
    proper time relative to them.

-   [`Derivative`] expressions are sensitive to control flow uniformity: they
    must not be moved out of an area of uniform control flow into a non-uniform
    area.

-   More generally, any expression that's used by more than one other expression
    or statement should probably be evaluated only once, and then stored in a
    variable to be cited at each point of use.

Naga tries to help back ends handle all these cases correctly in a somewhat
circuitous way. The [`ModuleInfo`] structure returned by [`Validator::validate`]
provides a reference count for each expression in each function in the module.
Naturally, any expression with a reference count of two or more deserves to be
evaluated and stored in a temporary variable at the point that the `Emit`
statement covering it is executed. But if we selectively lower the reference
count threshold to _one_ for the sensitive expression types listed above, so
that we _always_ generate a temporary variable and save their value, then the
same code that manages multiply referenced expressions will take care of
introducing temporaries for time-sensitive expressions as well. The
`Expression::bake_ref_count` method (private to the back ends) is meant to help
with this.

## `Expression` scope

Each `Expression` has a *scope*, which is the region of the function within
which it can be used by `Statement`s and other `Expression`s. It is a validation
error to use an `Expression` outside its scope.

An expression's scope is defined as follows:

-   The scope of a [`Constant`], [`GlobalVariable`], [`FunctionArgument`] or
    [`LocalVariable`] expression covers the entire `Function` in which it
    occurs.

-   The scope of an expression evaluated by an [`Emit`] statement covers the
    subsequent expressions in that `Emit`, the subsequent statements in the `Block`
    to which that `Emit` belongs (if any) and their sub-statements (if any).

-   The `result` expression of a [`Call`] or [`Atomic`] statement has a scope
    covering the subsequent statements in the `Block` in which the statement
    occurs (if any) and their sub-statements (if any).

For example, this implies that an expression evaluated by some statement in a
nested `Block` is not available in the `Block`'s parents. Such a value would
need to be stored in a local variable to be carried upwards in the statement
tree.

## Constant expressions

A Naga *constant expression* is one of the following [`Expression`]
variants, whose operands (if any) are also constant expressions:
- [`Literal`]
- [`Constant`], for [`Constant`]s
- [`ZeroValue`], for fixed-size types
- [`Compose`]
- [`Access`]
- [`AccessIndex`]
- [`Splat`]
- [`Swizzle`]
- [`Unary`]
- [`Binary`]
- [`Select`]
- [`Relational`]
- [`Math`]
- [`As`]

A constant expression can be evaluated at module translation time.

## Override expressions

A Naga *override expression* is the same as a [constant expression],
except that it is also allowed to reference other [`Override`]s.

An override expression can be evaluated at pipeline creation time.

[`AtomicResult`]: Expression::AtomicResult
[`RayQueryProceedResult`]: Expression::RayQueryProceedResult
[`CallResult`]: Expression::CallResult
[`Constant`]: Expression::Constant
[`ZeroValue`]: Expression::ZeroValue
[`Literal`]: Expression::Literal
[`Derivative`]: Expression::Derivative
[`FunctionArgument`]: Expression::FunctionArgument
[`GlobalVariable`]: Expression::GlobalVariable
[`ImageLoad`]: Expression::ImageLoad
[`ImageSample`]: Expression::ImageSample
[`Load`]: Expression::Load
[`LocalVariable`]: Expression::LocalVariable

[`Atomic`]: Statement::Atomic
[`Call`]: Statement::Call
[`Emit`]: Statement::Emit
[`Store`]: Statement::Store
[`RayQuery`]: Statement::RayQuery

[`Proceed::result`]: RayQueryFunction::Proceed::result

[`Validator::validate`]: valid::Validator::validate
[`ModuleInfo`]: valid::ModuleInfo

[`Literal`]: Expression::Literal
[`ZeroValue`]: Expression::ZeroValue
[`Compose`]: Expression::Compose
[`Access`]: Expression::Access
[`AccessIndex`]: Expression::AccessIndex
[`Splat`]: Expression::Splat
[`Swizzle`]: Expression::Swizzle
[`Unary`]: Expression::Unary
[`Binary`]: Expression::Binary
[`Select`]: Expression::Select
[`Relational`]: Expression::Relational
[`Math`]: Expression::Math
[`As`]: Expression::As

[constant expression]: index.html#constant-expressions
*/

#![allow(
    clippy::new_without_default,
    clippy::unneeded_field_pattern,
    clippy::match_like_matches_macro,
    clippy::collapsible_if,
    clippy::derive_partial_eq_without_eq,
    clippy::needless_borrowed_reference,
    clippy::single_match,
    clippy::enum_variant_names
)]
#![warn(
    trivial_casts,
    trivial_numeric_casts,
    unused_extern_crates,
    unused_qualifications,
    clippy::pattern_type_mismatch,
    clippy::missing_const_for_fn,
    clippy::rest_pat_in_fully_bound_structs,
    clippy::match_wildcard_for_single_variants
)]
#![deny(clippy::exit)]
#![cfg_attr(
    not(test),
    warn(
        clippy::dbg_macro,
        clippy::panic,
        clippy::print_stderr,
        clippy::print_stdout,
        clippy::todo
    )
)]

mod arena;
pub mod back;
mod block;
pub mod common;
#[cfg(feature = "compact")]
pub mod compact;
pub mod diagnostic_filter;
pub mod error;
pub mod front;
pub mod keywords;
mod non_max_u32;
pub mod proc;
mod span;
pub mod valid;

pub use crate::arena::{Arena, Handle, Range, UniqueArena};

pub use crate::span::{SourceLocation, Span, SpanContext, WithSpan};
#[cfg(feature = "arbitrary")]
use arbitrary::Arbitrary;
use diagnostic_filter::DiagnosticFilterNode;
#[cfg(feature = "deserialize")]
use serde::Deserialize;
#[cfg(feature = "serialize")]
use serde::Serialize;

/// Width of a boolean type, in bytes.
pub const BOOL_WIDTH: Bytes = 1;

/// Width of abstract types, in bytes.
pub const ABSTRACT_WIDTH: Bytes = 8;

/// Hash map that is faster but not resilient to DoS attacks.
pub type FastHashMap<K, T> = rustc_hash::FxHashMap<K, T>;
/// Hash set that is faster but not resilient to DoS attacks.
pub type FastHashSet<K> = rustc_hash::FxHashSet<K>;

/// Insertion-order-preserving hash set (`IndexSet<K>`), but with the same
/// hasher as `FastHashSet<K>` (faster but not resilient to DoS attacks).
pub type FastIndexSet<K> =
    indexmap::IndexSet<K, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;

/// Insertion-order-preserving hash map (`IndexMap<K, V>`), but with the same
/// hasher as `FastHashMap<K, V>` (faster but not resilient to DoS attacks).
pub type FastIndexMap<K, V> =
    indexmap::IndexMap<K, V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;

/// Map of expressions that have associated variable names
pub(crate) type NamedExpressions = FastIndexMap<Handle<Expression>, String>;

/// Early fragment tests.
///
/// In a standard situation, if a driver determines that it is possible to switch on early depth test, it will.
///
/// Typical situations when early depth test is switched off:
///   - Calling `discard` in a shader.
///   - Writing to the depth buffer, unless ConservativeDepth is enabled.
///
/// To use in a shader:
///   - GLSL: `layout(early_fragment_tests) in;`
///   - HLSL: `Attribute earlydepthstencil`
///   - SPIR-V: `ExecutionMode EarlyFragmentTests`
///   - WGSL: `@early_depth_test`
///
/// For more, see:
///   - <https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Explicit_specification>
///   - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-earlydepthstencil>
///   - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct EarlyDepthTest {
    pub conservative: Option<ConservativeDepth>,
}
/// Enables adjusting depth without disabling early Z.
///
/// To use in a shader:
///   - GLSL: `layout (depth_<greater/less/unchanged/any>) out float gl_FragDepth;`
///     - `depth_any` option behaves as if the layout qualifier was not present.
///   - HLSL: `SV_DepthGreaterEqual`/`SV_DepthLessEqual`/`SV_Depth`
///   - SPIR-V: `ExecutionMode Depth<Greater/Less/Unchanged>`
///   - WGSL: `@early_depth_test(greater_equal/less_equal/unchanged)`
///
/// For more, see:
///   - <https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_conservative_depth.txt>
///   - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-semantics#system-value-semantics>
///   - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ConservativeDepth {
    /// Shader may rewrite depth only with a value greater than calculated.
    GreaterEqual,

    /// Shader may rewrite depth smaller than one that would have been written without the modification.
    LessEqual,

    /// Shader may not rewrite depth value.
    Unchanged,
}

/// Stage of the programmable pipeline.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
#[allow(missing_docs)] // The names are self evident
pub enum ShaderStage {
    Vertex,
    Fragment,
    Compute,
}

/// Addressing space of variables.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum AddressSpace {
    /// Function locals.
    Function,
    /// Private data, per invocation, mutable.
    Private,
    /// Workgroup shared data, mutable.
    WorkGroup,
    /// Uniform buffer data.
    Uniform,
    /// Storage buffer data, potentially mutable.
    Storage { access: StorageAccess },
    /// Opaque handles, such as samplers and images.
    Handle,
    /// Push constants.
    PushConstant,
}

/// Built-in inputs and outputs.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum BuiltIn {
    Position { invariant: bool },
    ViewIndex,
    // vertex
    BaseInstance,
    BaseVertex,
    ClipDistance,
    CullDistance,
    InstanceIndex,
    PointSize,
    VertexIndex,
    DrawID,
    // fragment
    FragDepth,
    PointCoord,
    FrontFacing,
    PrimitiveIndex,
    SampleIndex,
    SampleMask,
    // compute
    GlobalInvocationId,
    LocalInvocationId,
    LocalInvocationIndex,
    WorkGroupId,
    WorkGroupSize,
    NumWorkGroups,
    // subgroup
    NumSubgroups,
    SubgroupId,
    SubgroupSize,
    SubgroupInvocationId,
}

/// Number of bytes per scalar.
pub type Bytes = u8;

/// Number of components in a vector.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum VectorSize {
    /// 2D vector
    Bi = 2,
    /// 3D vector
    Tri = 3,
    /// 4D vector
    Quad = 4,
}

impl VectorSize {
    const MAX: usize = Self::Quad as u8 as usize;
}

/// Primitive type for a scalar.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ScalarKind {
    /// Signed integer type.
    Sint,
    /// Unsigned integer type.
    Uint,
    /// Floating point type.
    Float,
    /// Boolean type.
    Bool,

    /// WGSL abstract integer type.
    ///
    /// These are forbidden by validation, and should never reach backends.
    AbstractInt,

    /// Abstract floating-point type.
    ///
    /// These are forbidden by validation, and should never reach backends.
    AbstractFloat,
}

/// Characteristics of a scalar type.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Scalar {
    /// How the value's bits are to be interpreted.
    pub kind: ScalarKind,

    /// This size of the value in bytes.
    pub width: Bytes,
}

#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum PendingArraySize {
    Expression(Handle<Expression>),
    Override(Handle<Override>),
}

/// Size of an array.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ArraySize {
    /// The array size is constant.
    Constant(std::num::NonZeroU32),
    /// The array size is an override-expression.
    Pending(PendingArraySize),
    /// The array size can change at runtime.
    Dynamic,
}

/// The interpolation qualifier of a binding or struct field.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Interpolation {
    /// The value will be interpolated in a perspective-correct fashion.
    /// Also known as "smooth" in glsl.
    Perspective,
    /// Indicates that linear, non-perspective, correct
    /// interpolation must be used.
    /// Also known as "no_perspective" in glsl.
    Linear,
    /// Indicates that no interpolation will be performed.
    Flat,
}

/// The sampling qualifiers of a binding or struct field.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Sampling {
    /// Interpolate the value at the center of the pixel.
    Center,

    /// Interpolate the value at a point that lies within all samples covered by
    /// the fragment within the current primitive. In multisampling, use a
    /// single value for all samples in the primitive.
    Centroid,

    /// Interpolate the value at each sample location. In multisampling, invoke
    /// the fragment shader once per sample.
    Sample,

    /// Use the value provided by the first vertex of the current primitive.
    First,

    /// Use the value provided by the first or last vertex of the current primitive. The exact
    /// choice is implementation-dependent.
    Either,
}

/// Member of a user-defined structure.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct StructMember {
    pub name: Option<String>,
    /// Type of the field.
    pub ty: Handle<Type>,
    /// For I/O structs, defines the binding.
    pub binding: Option<Binding>,
    /// Offset from the beginning from the struct.
    pub offset: u32,
}

/// The number of dimensions an image has.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageDimension {
    /// 1D image
    D1,
    /// 2D image
    D2,
    /// 3D image
    D3,
    /// Cube map
    Cube,
}

bitflags::bitflags! {
    /// Flags describing an image.
    #[cfg_attr(feature = "serialize", derive(Serialize))]
    #[cfg_attr(feature = "deserialize", derive(Deserialize))]
    #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
    #[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
    pub struct StorageAccess: u32 {
        /// Storage can be used as a source for load ops.
        const LOAD = 0x1;
        /// Storage can be used as a target for store ops.
        const STORE = 0x2;
        /// Storage can be used as a target for atomic ops.
        const ATOMIC = 0x4;
    }
}

/// Image storage format.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum StorageFormat {
    // 8-bit formats
    R8Unorm,
    R8Snorm,
    R8Uint,
    R8Sint,

    // 16-bit formats
    R16Uint,
    R16Sint,
    R16Float,
    Rg8Unorm,
    Rg8Snorm,
    Rg8Uint,
    Rg8Sint,

    // 32-bit formats
    R32Uint,
    R32Sint,
    R32Float,
    Rg16Uint,
    Rg16Sint,
    Rg16Float,
    Rgba8Unorm,
    Rgba8Snorm,
    Rgba8Uint,
    Rgba8Sint,
    Bgra8Unorm,

    // Packed 32-bit formats
    Rgb10a2Uint,
    Rgb10a2Unorm,
    Rg11b10Ufloat,

    // 64-bit formats
    R64Uint,
    Rg32Uint,
    Rg32Sint,
    Rg32Float,
    Rgba16Uint,
    Rgba16Sint,
    Rgba16Float,

    // 128-bit formats
    Rgba32Uint,
    Rgba32Sint,
    Rgba32Float,

    // Normalized 16-bit per channel formats
    R16Unorm,
    R16Snorm,
    Rg16Unorm,
    Rg16Snorm,
    Rgba16Unorm,
    Rgba16Snorm,
}

/// Sub-class of the image type.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageClass {
    /// Regular sampled image.
    Sampled {
        /// Kind of values to sample.
        kind: ScalarKind,
        /// Multi-sampled image.
        ///
        /// A multi-sampled image holds several samples per texel. Multi-sampled
        /// images cannot have mipmaps.
        multi: bool,
    },
    /// Depth comparison image.
    Depth {
        /// Multi-sampled depth image.
        multi: bool,
    },
    /// Storage image.
    Storage {
        format: StorageFormat,
        access: StorageAccess,
    },
}

/// A data type declared in the module.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Type {
    /// The name of the type, if any.
    pub name: Option<String>,
    /// Inner structure that depends on the kind of the type.
    pub inner: TypeInner,
}

/// Enum with additional information, depending on the kind of type.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum TypeInner {
    /// Number of integral or floating-point kind.
    Scalar(Scalar),
    /// Vector of numbers.
    Vector { size: VectorSize, scalar: Scalar },
    /// Matrix of numbers.
    Matrix {
        columns: VectorSize,
        rows: VectorSize,
        scalar: Scalar,
    },
    /// Atomic scalar.
    Atomic(Scalar),
    /// Pointer to another type.
    ///
    /// Pointers to scalars and vectors should be treated as equivalent to
    /// [`ValuePointer`] types. Use the [`TypeInner::equivalent`] method to
    /// compare types in a way that treats pointers correctly.
    ///
    /// ## Pointers to non-`SIZED` types
    ///
    /// The `base` type of a pointer may be a non-[`SIZED`] type like a
    /// dynamically-sized [`Array`], or a [`Struct`] whose last member is a
    /// dynamically sized array. Such pointers occur as the types of
    /// [`GlobalVariable`] or [`AccessIndex`] expressions referring to
    /// dynamically-sized arrays.
    ///
    /// However, among pointers to non-`SIZED` types, only pointers to `Struct`s
    /// are [`DATA`]. Pointers to dynamically sized `Array`s cannot be passed as
    /// arguments, stored in variables, or held in arrays or structures. Their
    /// only use is as the types of `AccessIndex` expressions.
    ///
    /// [`SIZED`]: valid::TypeFlags::SIZED
    /// [`DATA`]: valid::TypeFlags::DATA
    /// [`Array`]: TypeInner::Array
    /// [`Struct`]: TypeInner::Struct
    /// [`ValuePointer`]: TypeInner::ValuePointer
    /// [`GlobalVariable`]: Expression::GlobalVariable
    /// [`AccessIndex`]: Expression::AccessIndex
    Pointer {
        base: Handle<Type>,
        space: AddressSpace,
    },

    /// Pointer to a scalar or vector.
    ///
    /// A `ValuePointer` type is equivalent to a `Pointer` whose `base` is a
    /// `Scalar` or `Vector` type. This is for use in [`TypeResolution::Value`]
    /// variants; see the documentation for [`TypeResolution`] for details.
    ///
    /// Use the [`TypeInner::equivalent`] method to compare types that could be
    /// pointers, to ensure that `Pointer` and `ValuePointer` types are
    /// recognized as equivalent.
    ///
    /// [`TypeResolution`]: proc::TypeResolution
    /// [`TypeResolution::Value`]: proc::TypeResolution::Value
    ValuePointer {
        size: Option<VectorSize>,
        scalar: Scalar,
        space: AddressSpace,
    },

    /// Homogeneous list of elements.
    ///
    /// The `base` type must be a [`SIZED`], [`DATA`] type.
    ///
    /// ## Dynamically sized arrays
    ///
    /// An `Array` is [`SIZED`] unless its `size` is [`Dynamic`].
    /// Dynamically-sized arrays may only appear in a few situations:
    ///
    /// -   They may appear as the type of a [`GlobalVariable`], or as the last
    ///     member of a [`Struct`].
    ///
    /// -   They may appear as the base type of a [`Pointer`]. An
    ///     [`AccessIndex`] expression referring to a struct's final
    ///     unsized array member would have such a pointer type. However, such
    ///     pointer types may only appear as the types of such intermediate
    ///     expressions. They are not [`DATA`], and cannot be stored in
    ///     variables, held in arrays or structs, or passed as parameters.
    ///
    /// [`SIZED`]: crate::valid::TypeFlags::SIZED
    /// [`DATA`]: crate::valid::TypeFlags::DATA
    /// [`Dynamic`]: ArraySize::Dynamic
    /// [`Struct`]: TypeInner::Struct
    /// [`Pointer`]: TypeInner::Pointer
    /// [`AccessIndex`]: Expression::AccessIndex
    Array {
        base: Handle<Type>,
        size: ArraySize,
        stride: u32,
    },

    /// User-defined structure.
    ///
    /// There must always be at least one member.
    ///
    /// A `Struct` type is [`DATA`], and the types of its members must be
    /// `DATA` as well.
    ///
    /// Member types must be [`SIZED`], except for the final member of a
    /// struct, which may be a dynamically sized [`Array`]. The
    /// `Struct` type itself is `SIZED` when all its members are `SIZED`.
    ///
    /// [`DATA`]: crate::valid::TypeFlags::DATA
    /// [`SIZED`]: crate::valid::TypeFlags::SIZED
    /// [`Array`]: TypeInner::Array
    Struct {
        members: Vec<StructMember>,
        //TODO: should this be unaligned?
        span: u32,
    },
    /// Possibly multidimensional array of texels.
    Image {
        dim: ImageDimension,
        arrayed: bool,
        //TODO: consider moving `multisampled: bool` out
        class: ImageClass,
    },
    /// Can be used to sample values from images.
    Sampler { comparison: bool },

    /// Opaque object representing an acceleration structure of geometry.
    AccelerationStructure,

    /// Locally used handle for ray queries.
    RayQuery,

    /// Array of bindings.
    ///
    /// A `BindingArray` represents an array where each element draws its value
    /// from a separate bound resource. The array's element type `base` may be
    /// [`Image`], [`Sampler`], or any type that would be permitted for a global
    /// in the [`Uniform`] or [`Storage`] address spaces. Only global variables
    /// may be binding arrays; on the host side, their values are provided by
    /// [`TextureViewArray`], [`SamplerArray`], or [`BufferArray`]
    /// bindings.
    ///
    /// Since each element comes from a distinct resource, a binding array of
    /// images could have images of varying sizes (but not varying dimensions;
    /// they must all have the same `Image` type). Or, a binding array of
    /// buffers could have elements that are dynamically sized arrays, each with
    /// a different length.
    ///
    /// Binding arrays are in the same address spaces as their underlying type.
    /// As such, referring to an array of images produces an [`Image`] value
    /// directly (as opposed to a pointer). The only operation permitted on
    /// `BindingArray` values is indexing, which works transparently: indexing
    /// a binding array of samplers yields a [`Sampler`], indexing a pointer to the
    /// binding array of storage buffers produces a pointer to the storage struct.
    ///
    /// Unlike textures and samplers, binding arrays are not [`ARGUMENT`], so
    /// they cannot be passed as arguments to functions.
    ///
    /// Naga's WGSL front end supports binding arrays with the type syntax
    /// `binding_array<T, N>`.
    ///
    /// [`Image`]: TypeInner::Image
    /// [`Sampler`]: TypeInner::Sampler
    /// [`Uniform`]: AddressSpace::Uniform
    /// [`Storage`]: AddressSpace::Storage
    /// [`TextureViewArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.TextureViewArray
    /// [`SamplerArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.SamplerArray
    /// [`BufferArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.BufferArray
    /// [`DATA`]: crate::valid::TypeFlags::DATA
    /// [`ARGUMENT`]: crate::valid::TypeFlags::ARGUMENT
    /// [naga#1864]: https://github.com/gfx-rs/naga/issues/1864
    BindingArray { base: Handle<Type>, size: ArraySize },
}

#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Literal {
    /// May not be NaN or infinity.
    F64(f64),
    /// May not be NaN or infinity.
    F32(f32),
    U32(u32),
    I32(i32),
    U64(u64),
    I64(i64),
    Bool(bool),
    AbstractInt(i64),
    AbstractFloat(f64),
}

/// Pipeline-overridable constant.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Override {
    pub name: Option<String>,
    /// Pipeline Constant ID.
    pub id: Option<u16>,
    pub ty: Handle<Type>,

    /// The default value of the pipeline-overridable constant.
    ///
    /// This [`Handle`] refers to [`Module::global_expressions`], not
    /// any [`Function::expressions`] arena.
    pub init: Option<Handle<Expression>>,
}

/// Constant value.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Constant {
    pub name: Option<String>,
    pub ty: Handle<Type>,

    /// The value of the constant.
    ///
    /// This [`Handle`] refers to [`Module::global_expressions`], not
    /// any [`Function::expressions`] arena.
    pub init: Handle<Expression>,
}

/// Describes how an input/output variable is to be bound.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Binding {
    /// Built-in shader variable.
    BuiltIn(BuiltIn),

    /// Indexed location.
    ///
    /// Values passed from the [`Vertex`] stage to the [`Fragment`] stage must
    /// have their `interpolation` defaulted (i.e. not `None`) by the front end
    /// as appropriate for that language.
    ///
    /// For other stages, we permit interpolations even though they're ignored.
    /// When a front end is parsing a struct type, it usually doesn't know what
    /// stages will be using it for IO, so it's easiest if it can apply the
    /// defaults to anything with a `Location` binding, just in case.
    ///
    /// For anything other than floating-point scalars and vectors, the
    /// interpolation must be `Flat`.
    ///
    /// [`Vertex`]: crate::ShaderStage::Vertex
    /// [`Fragment`]: crate::ShaderStage::Fragment
    Location {
        location: u32,
        /// Indicates the 2nd input to the blender when dual-source blending.
        second_blend_source: bool,
        interpolation: Option<Interpolation>,
        sampling: Option<Sampling>,
    },
}

/// Pipeline binding information for global resources.
#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct ResourceBinding {
    /// The bind group index.
    pub group: u32,
    /// Binding number within the group.
    pub binding: u32,
}

/// Variable defined at module level.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct GlobalVariable {
    /// Name of the variable, if any.
    pub name: Option<String>,
    /// How this variable is to be stored.
    pub space: AddressSpace,
    /// For resources, defines the binding point.
    pub binding: Option<ResourceBinding>,
    /// The type of this variable.
    pub ty: Handle<Type>,
    /// Initial value for this variable.
    ///
    /// This refers to an [`Expression`] in [`Module::global_expressions`].
    pub init: Option<Handle<Expression>>,
}

/// Variable defined at function level.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct LocalVariable {
    /// Name of the variable, if any.
    pub name: Option<String>,
    /// The type of this variable.
    pub ty: Handle<Type>,
    /// Initial value for this variable.
    ///
    /// This handle refers to an expression in this `LocalVariable`'s function's
    /// [`expressions`] arena, but it is required to be an evaluated override
    /// expression.
    ///
    /// [`expressions`]: Function::expressions
    pub init: Option<Handle<Expression>>,
}

/// Operation that can be applied on a single value.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum UnaryOperator {
    Negate,
    LogicalNot,
    BitwiseNot,
}

/// Operation that can be applied on two values.
///
/// ## Arithmetic type rules
///
/// The arithmetic operations `Add`, `Subtract`, `Multiply`, `Divide`, and
/// `Modulo` can all be applied to [`Scalar`] types other than [`Bool`], or
/// [`Vector`]s thereof. Both operands must have the same type.
///
/// `Add` and `Subtract` can also be applied to [`Matrix`] values. Both operands
/// must have the same type.
///
/// `Multiply` supports additional cases:
///
/// -   A [`Matrix`] or [`Vector`] can be multiplied by a scalar [`Float`],
///     either on the left or the right.
///
/// -   A [`Matrix`] on the left can be multiplied by a [`Vector`] on the right
///     if the matrix has as many columns as the vector has components (`matCxR
///     * VecC`).
///
/// -   A [`Vector`] on the left can be multiplied by a [`Matrix`] on the right
///     if the matrix has as many rows as the vector has components (`VecR *
///     matCxR`).
///
/// -   Two matrices can be multiplied if the left operand has as many columns
///     as the right operand has rows (`matNxR * matCxN`).
///
/// In all the above `Multiply` cases, the byte widths of the underlying scalar
/// types of both operands must be the same.
///
/// Note that `Multiply` supports mixed vector and scalar operations directly,
/// whereas the other arithmetic operations require an explicit [`Splat`] for
/// mixed-type use.
///
/// [`Scalar`]: TypeInner::Scalar
/// [`Vector`]: TypeInner::Vector
/// [`Matrix`]: TypeInner::Matrix
/// [`Float`]: ScalarKind::Float
/// [`Bool`]: ScalarKind::Bool
/// [`Splat`]: Expression::Splat
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum BinaryOperator {
    Add,
    Subtract,
    Multiply,
    Divide,
    /// Equivalent of the WGSL's `%` operator or SPIR-V's `OpFRem`
    Modulo,
    Equal,
    NotEqual,
    Less,
    LessEqual,
    Greater,
    GreaterEqual,
    And,
    ExclusiveOr,
    InclusiveOr,
    LogicalAnd,
    LogicalOr,
    ShiftLeft,
    /// Right shift carries the sign of signed integers only.
    ShiftRight,
}

/// Function on an atomic value.
///
/// Note: these do not include load/store, which use the existing
/// [`Expression::Load`] and [`Statement::Store`].
///
/// All `Handle<Expression>` values here refer to an expression in
/// [`Function::expressions`].
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum AtomicFunction {
    Add,
    Subtract,
    And,
    ExclusiveOr,
    InclusiveOr,
    Min,
    Max,
    Exchange { compare: Option<Handle<Expression>> },
}

/// Hint at which precision to compute a derivative.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum DerivativeControl {
    Coarse,
    Fine,
    None,
}

/// Axis on which to compute a derivative.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum DerivativeAxis {
    X,
    Y,
    Width,
}

/// Built-in shader function for testing relation between values.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum RelationalFunction {
    All,
    Any,
    IsNan,
    IsInf,
}

/// Built-in shader function for math.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum MathFunction {
    // comparison
    Abs,
    Min,
    Max,
    Clamp,
    Saturate,
    // trigonometry
    Cos,
    Cosh,
    Sin,
    Sinh,
    Tan,
    Tanh,
    Acos,
    Asin,
    Atan,
    Atan2,
    Asinh,
    Acosh,
    Atanh,
    Radians,
    Degrees,
    // decomposition
    Ceil,
    Floor,
    Round,
    Fract,
    Trunc,
    Modf,
    Frexp,
    Ldexp,
    // exponent
    Exp,
    Exp2,
    Log,
    Log2,
    Pow,
    // geometry
    Dot,
    Outer,
    Cross,
    Distance,
    Length,
    Normalize,
    FaceForward,
    Reflect,
    Refract,
    // computational
    Sign,
    Fma,
    Mix,
    Step,
    SmoothStep,
    Sqrt,
    InverseSqrt,
    Inverse,
    Transpose,
    Determinant,
    QuantizeToF16,
    // bits
    CountTrailingZeros,
    CountLeadingZeros,
    CountOneBits,
    ReverseBits,
    ExtractBits,
    InsertBits,
    FirstTrailingBit,
    FirstLeadingBit,
    // data packing
    Pack4x8snorm,
    Pack4x8unorm,
    Pack2x16snorm,
    Pack2x16unorm,
    Pack2x16float,
    Pack4xI8,
    Pack4xU8,
    // data unpacking
    Unpack4x8snorm,
    Unpack4x8unorm,
    Unpack2x16snorm,
    Unpack2x16unorm,
    Unpack2x16float,
    Unpack4xI8,
    Unpack4xU8,
}

/// Sampling modifier to control the level of detail.
///
/// All `Handle<Expression>` values here refer to an expression in
/// [`Function::expressions`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SampleLevel {
    Auto,
    Zero,
    Exact(Handle<Expression>),
    Bias(Handle<Expression>),
    Gradient {
        x: Handle<Expression>,
        y: Handle<Expression>,
    },
}

/// Type of an image query.
///
/// All `Handle<Expression>` values here refer to an expression in
/// [`Function::expressions`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageQuery {
    /// Get the size at the specified level.
    ///
    /// The return value is a `u32` for 1D images, and a `vecN<u32>`
    /// for an image with dimensions N > 2.
    Size {
        /// If `None`, the base level is considered.
        level: Option<Handle<Expression>>,
    },
    /// Get the number of mipmap levels, a `u32`.
    NumLevels,
    /// Get the number of array layers, a `u32`.
    NumLayers,
    /// Get the number of samples, a `u32`.
    NumSamples,
}

/// Component selection for a vector swizzle.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SwizzleComponent {
    X = 0,
    Y = 1,
    Z = 2,
    W = 3,
}

/// The specific behavior of a [`SubgroupGather`] statement.
///
/// All `Handle<Expression>` values here refer to an expression in
/// [`Function::expressions`].
///
/// [`SubgroupGather`]: Statement::SubgroupGather
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum GatherMode {
    /// All gather from the active lane with the smallest index
    BroadcastFirst,
    /// All gather from the same lane at the index given by the expression
    Broadcast(Handle<Expression>),
    /// Each gathers from a different lane at the index given by the expression
    Shuffle(Handle<Expression>),
    /// Each gathers from their lane plus the shift given by the expression
    ShuffleDown(Handle<Expression>),
    /// Each gathers from their lane minus the shift given by the expression
    ShuffleUp(Handle<Expression>),
    /// Each gathers from their lane xored with the given by the expression
    ShuffleXor(Handle<Expression>),
}

#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SubgroupOperation {
    All = 0,
    Any = 1,
    Add = 2,
    Mul = 3,
    Min = 4,
    Max = 5,
    And = 6,
    Or = 7,
    Xor = 8,
}

#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum CollectiveOperation {
    Reduce = 0,
    InclusiveScan = 1,
    ExclusiveScan = 2,
}

bitflags::bitflags! {
    /// Memory barrier flags.
    #[cfg_attr(feature = "serialize", derive(Serialize))]
    #[cfg_attr(feature = "deserialize", derive(Deserialize))]
    #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
    #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
    pub struct Barrier: u32 {
        /// Barrier affects all [`AddressSpace::Storage`] accesses.
        const STORAGE = 1 << 0;
        /// Barrier affects all [`AddressSpace::WorkGroup`] accesses.
        const WORK_GROUP = 1 << 1;
        /// Barrier synchronizes execution across all invocations within a subgroup that execute this instruction.
        const SUB_GROUP = 1 << 2;
    }
}

/// An expression that can be evaluated to obtain a value.
///
/// This is a Single Static Assignment (SSA) scheme similar to SPIR-V.
///
/// When an `Expression` variant holds `Handle<Expression>` fields, they refer
/// to another expression in the same arena, unless explicitly noted otherwise.
/// One `Arena<Expression>` may only refer to a different arena indirectly, via
/// [`Constant`] or [`Override`] expressions, which hold handles for their
/// respective types.
///
/// [`Constant`]: Expression::Constant
/// [`Override`]: Expression::Override
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Expression {
    /// Literal.
    Literal(Literal),
    /// Constant value.
    Constant(Handle<Constant>),
    /// Pipeline-overridable constant.
    Override(Handle<Override>),
    /// Zero value of a type.
    ZeroValue(Handle<Type>),
    /// Composite expression.
    Compose {
        ty: Handle<Type>,
        components: Vec<Handle<Expression>>,
    },

    /// Array access with a computed index.
    ///
    /// ## Typing rules
    ///
    /// The `base` operand must be some composite type: [`Vector`], [`Matrix`],
    /// [`Array`], a [`Pointer`] to one of those, or a [`ValuePointer`] with a
    /// `size`.
    ///
    /// The `index` operand must be an integer, signed or unsigned.
    ///
    /// Indexing a [`Vector`] or [`Array`] produces a value of its element type.
    /// Indexing a [`Matrix`] produces a [`Vector`].
    ///
    /// Indexing a [`Pointer`] to any of the above produces a pointer to the
    /// element/component type, in the same [`space`]. In the case of [`Array`],
    /// the result is an actual [`Pointer`], but for vectors and matrices, there
    /// may not be any type in the arena representing the component's type, so
    /// those produce [`ValuePointer`] types equivalent to the appropriate
    /// [`Pointer`].
    ///
    /// ## Dynamic indexing restrictions
    ///
    /// To accommodate restrictions in some of the shader languages that Naga
    /// targets, it is not permitted to subscript a matrix with a dynamically
    /// computed index unless that matrix appears behind a pointer. In other
    /// words, if the inner type of `base` is [`Matrix`], then `index` must be a
    /// constant. But if the type of `base` is a [`Pointer`] to an matrix, then
    /// the index may be any expression of integer type.
    ///
    /// You can use the [`Expression::is_dynamic_index`] method to determine
    /// whether a given index expression requires matrix base operands to be
    /// behind a pointer.
    ///
    /// (It would be simpler to always require the use of `AccessIndex` when
    /// subscripting matrices that are not behind pointers, but to accommodate
    /// existing front ends, Naga also permits `Access`, with a restricted
    /// `index`.)
    ///
    /// [`Vector`]: TypeInner::Vector
    /// [`Matrix`]: TypeInner::Matrix
    /// [`Array`]: TypeInner::Array
    /// [`Pointer`]: TypeInner::Pointer
    /// [`space`]: TypeInner::Pointer::space
    /// [`ValuePointer`]: TypeInner::ValuePointer
    /// [`Float`]: ScalarKind::Float
    Access {
        base: Handle<Expression>,
        index: Handle<Expression>,
    },
    /// Access the same types as [`Access`], plus [`Struct`] with a known index.
    ///
    /// [`Access`]: Expression::Access
    /// [`Struct`]: TypeInner::Struct
    AccessIndex {
        base: Handle<Expression>,
        index: u32,
    },
    /// Splat scalar into a vector.
    Splat {
        size: VectorSize,
        value: Handle<Expression>,
    },
    /// Vector swizzle.
    Swizzle {
        size: VectorSize,
        vector: Handle<Expression>,
        pattern: [SwizzleComponent; 4],
    },

    /// Reference a function parameter, by its index.
    ///
    /// A `FunctionArgument` expression evaluates to a pointer to the argument's
    /// value. You must use a [`Load`] expression to retrieve its value, or a
    /// [`Store`] statement to assign it a new value.
    ///
    /// [`Load`]: Expression::Load
    /// [`Store`]: Statement::Store
    FunctionArgument(u32),

    /// Reference a global variable.
    ///
    /// If the given `GlobalVariable`'s [`space`] is [`AddressSpace::Handle`],
    /// then the variable stores some opaque type like a sampler or an image,
    /// and a `GlobalVariable` expression referring to it produces the
    /// variable's value directly.
    ///
    /// For any other address space, a `GlobalVariable` expression produces a
    /// pointer to the variable's value. You must use a [`Load`] expression to
    /// retrieve its value, or a [`Store`] statement to assign it a new value.
    ///
    /// [`space`]: GlobalVariable::space
    /// [`Load`]: Expression::Load
    /// [`Store`]: Statement::Store
    GlobalVariable(Handle<GlobalVariable>),

    /// Reference a local variable.
    ///
    /// A `LocalVariable` expression evaluates to a pointer to the variable's value.
    /// You must use a [`Load`](Expression::Load) expression to retrieve its value,
    /// or a [`Store`](Statement::Store) statement to assign it a new value.
    LocalVariable(Handle<LocalVariable>),

    /// Load a value indirectly.
    ///
    /// For [`TypeInner::Atomic`] the result is a corresponding scalar.
    /// For other types behind the `pointer<T>`, the result is `T`.
    Load { pointer: Handle<Expression> },
    /// Sample a point from a sampled or a depth image.
    ImageSample {
        image: Handle<Expression>,
        sampler: Handle<Expression>,
        /// If Some(), this operation is a gather operation
        /// on the selected component.
        gather: Option<SwizzleComponent>,
        coordinate: Handle<Expression>,
        array_index: Option<Handle<Expression>>,
        /// This refers to an expression in [`Module::global_expressions`].
        offset: Option<Handle<Expression>>,
        level: SampleLevel,
        depth_ref: Option<Handle<Expression>>,
    },

    /// Load a texel from an image.
    ///
    /// For most images, this returns a four-element vector of the same
    /// [`ScalarKind`] as the image. If the format of the image does not have
    /// four components, default values are provided: the first three components
    /// (typically R, G, and B) default to zero, and the final component
    /// (typically alpha) defaults to one.
    ///
    /// However, if the image's [`class`] is [`Depth`], then this returns a
    /// [`Float`] scalar value.
    ///
    /// [`ScalarKind`]: ScalarKind
    /// [`class`]: TypeInner::Image::class
    /// [`Depth`]: ImageClass::Depth
    /// [`Float`]: ScalarKind::Float
    ImageLoad {
        /// The image to load a texel from. This must have type [`Image`]. (This
        /// will necessarily be a [`GlobalVariable`] or [`FunctionArgument`]
        /// expression, since no other expressions are allowed to have that
        /// type.)
        ///
        /// [`Image`]: TypeInner::Image
        /// [`GlobalVariable`]: Expression::GlobalVariable
        /// [`FunctionArgument`]: Expression::FunctionArgument
        image: Handle<Expression>,

        /// The coordinate of the texel we wish to load. This must be a scalar
        /// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
        /// vector for [`D3`] images. (Array indices, sample indices, and
        /// explicit level-of-detail values are supplied separately.) Its
        /// component type must be [`Sint`].
        ///
        /// [`D1`]: ImageDimension::D1
        /// [`D2`]: ImageDimension::D2
        /// [`D3`]: ImageDimension::D3
        /// [`Bi`]: VectorSize::Bi
        /// [`Tri`]: VectorSize::Tri
        /// [`Sint`]: ScalarKind::Sint
        coordinate: Handle<Expression>,

        /// The index into an arrayed image. If the [`arrayed`] flag in
        /// `image`'s type is `true`, then this must be `Some(expr)`, where
        /// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
        ///
        /// [`arrayed`]: TypeInner::Image::arrayed
        /// [`Sint`]: ScalarKind::Sint
        array_index: Option<Handle<Expression>>,

        /// A sample index, for multisampled [`Sampled`] and [`Depth`] images.
        ///
        /// [`Sampled`]: ImageClass::Sampled
        /// [`Depth`]: ImageClass::Depth
        sample: Option<Handle<Expression>>,

        /// A level of detail, for mipmapped images.
        ///
        /// This must be present when accessing non-multisampled
        /// [`Sampled`] and [`Depth`] images, even if only the
        /// full-resolution level is present (in which case the only
        /// valid level is zero).
        ///
        /// [`Sampled`]: ImageClass::Sampled
        /// [`Depth`]: ImageClass::Depth
        level: Option<Handle<Expression>>,
    },

    /// Query information from an image.
    ImageQuery {
        image: Handle<Expression>,
        query: ImageQuery,
    },
    /// Apply an unary operator.
    Unary {
        op: UnaryOperator,
        expr: Handle<Expression>,
    },
    /// Apply a binary operator.
    Binary {
        op: BinaryOperator,
        left: Handle<Expression>,
        right: Handle<Expression>,
    },
    /// Select between two values based on a condition.
    ///
    /// Note that, because expressions have no side effects, it is unobservable
    /// whether the non-selected branch is evaluated.
    Select {
        /// Boolean expression
        condition: Handle<Expression>,
        accept: Handle<Expression>,
        reject: Handle<Expression>,
    },
    /// Compute the derivative on an axis.
    Derivative {
        axis: DerivativeAxis,
        ctrl: DerivativeControl,
        expr: Handle<Expression>,
    },
    /// Call a relational function.
    Relational {
        fun: RelationalFunction,
        argument: Handle<Expression>,
    },
    /// Call a math function
    Math {
        fun: MathFunction,
        arg: Handle<Expression>,
        arg1: Option<Handle<Expression>>,
        arg2: Option<Handle<Expression>>,
        arg3: Option<Handle<Expression>>,
    },
    /// Cast a simple type to another kind.
    As {
        /// Source expression, which can only be a scalar or a vector.
        expr: Handle<Expression>,
        /// Target scalar kind.
        kind: ScalarKind,
        /// If provided, converts to the specified byte width.
        /// Otherwise, bitcast.
        convert: Option<Bytes>,
    },
    /// Result of calling another function.
    CallResult(Handle<Function>),

    /// Result of an atomic operation.
    ///
    /// This expression must be referred to by the [`result`] field of exactly one
    /// [`Atomic`][stmt] statement somewhere in the same function. Let `T` be the
    /// scalar type contained by the [`Atomic`][type] value that the statement
    /// operates on.
    ///
    /// If `comparison` is `false`, then `ty` must be the scalar type `T`.
    ///
    /// If `comparison` is `true`, then `ty` must be a [`Struct`] with two members:
    ///
    /// - A member named `old_value`, whose type is `T`, and
    ///
    /// - A member named `exchanged`, of type [`BOOL`].
    ///
    /// [`result`]: Statement::Atomic::result
    /// [stmt]: Statement::Atomic
    /// [type]: TypeInner::Atomic
    /// [`Struct`]: TypeInner::Struct
    /// [`BOOL`]: Scalar::BOOL
    AtomicResult { ty: Handle<Type>, comparison: bool },

    /// Result of a [`WorkGroupUniformLoad`] statement.
    ///
    /// [`WorkGroupUniformLoad`]: Statement::WorkGroupUniformLoad
    WorkGroupUniformLoadResult {
        /// The type of the result
        ty: Handle<Type>,
    },
    /// Get the length of an array.
    /// The expression must resolve to a pointer to an array with a dynamic size.
    ///
    /// This doesn't match the semantics of spirv's `OpArrayLength`, which must be passed
    /// a pointer to a structure containing a runtime array in its' last field.
    ArrayLength(Handle<Expression>),

    /// Result of a [`Proceed`] [`RayQuery`] statement.
    ///
    /// [`Proceed`]: RayQueryFunction::Proceed
    /// [`RayQuery`]: Statement::RayQuery
    RayQueryProceedResult,

    /// Return an intersection found by `query`.
    ///
    /// If `committed` is true, return the committed result available when
    RayQueryGetIntersection {
        query: Handle<Expression>,
        committed: bool,
    },
    /// Result of a [`SubgroupBallot`] statement.
    ///
    /// [`SubgroupBallot`]: Statement::SubgroupBallot
    SubgroupBallotResult,
    /// Result of a [`SubgroupCollectiveOperation`] or [`SubgroupGather`] statement.
    ///
    /// [`SubgroupCollectiveOperation`]: Statement::SubgroupCollectiveOperation
    /// [`SubgroupGather`]: Statement::SubgroupGather
    SubgroupOperationResult { ty: Handle<Type> },
}

pub use block::Block;

/// The value of the switch case.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SwitchValue {
    I32(i32),
    U32(u32),
    Default,
}

/// A case for a switch statement.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct SwitchCase {
    /// Value, upon which the case is considered true.
    pub value: SwitchValue,
    /// Body of the case.
    pub body: Block,
    /// If true, the control flow continues to the next case in the list,
    /// or default.
    pub fall_through: bool,
}

/// An operation that a [`RayQuery` statement] applies to its [`query`] operand.
///
/// [`RayQuery` statement]: Statement::RayQuery
/// [`query`]: Statement::RayQuery::query
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum RayQueryFunction {
    /// Initialize the `RayQuery` object.
    Initialize {
        /// The acceleration structure within which this query should search for hits.
        ///
        /// The expression must be an [`AccelerationStructure`].
        ///
        /// [`AccelerationStructure`]: TypeInner::AccelerationStructure
        acceleration_structure: Handle<Expression>,

        #[allow(rustdoc::private_intra_doc_links)]
        /// A struct of detailed parameters for the ray query.
        ///
        /// This expression should have the struct type given in
        /// [`SpecialTypes::ray_desc`]. This is available in the WGSL
        /// front end as the `RayDesc` type.
        descriptor: Handle<Expression>,
    },

    /// Start or continue the query given by the statement's [`query`] operand.
    ///
    /// After executing this statement, the `result` expression is a
    /// [`Bool`] scalar indicating whether there are more intersection
    /// candidates to consider.
    ///
    /// [`query`]: Statement::RayQuery::query
    /// [`Bool`]: ScalarKind::Bool
    Proceed {
        result: Handle<Expression>,
    },

    Terminate,
}

//TODO: consider removing `Clone`. It's not valid to clone `Statement::Emit` anyway.
/// Instructions which make up an executable block.
///
/// `Handle<Expression>` and `Range<Expression>` values in `Statement` variants
/// refer to expressions in [`Function::expressions`], unless otherwise noted.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Statement {
    /// Emit a range of expressions, visible to all statements that follow in this block.
    ///
    /// See the [module-level documentation][emit] for details.
    ///
    /// [emit]: index.html#expression-evaluation-time
    Emit(Range<Expression>),
    /// A block containing more statements, to be executed sequentially.
    Block(Block),
    /// Conditionally executes one of two blocks, based on the value of the condition.
    ///
    /// Naga IR does not have "phi" instructions. If you need to use
    /// values computed in an `accept` or `reject` block after the `If`,
    /// store them in a [`LocalVariable`].
    If {
        condition: Handle<Expression>, //bool
        accept: Block,
        reject: Block,
    },
    /// Conditionally executes one of multiple blocks, based on the value of the selector.
    ///
    /// Each case must have a distinct [`value`], exactly one of which must be
    /// [`Default`]. The `Default` may appear at any position, and covers all
    /// values not explicitly appearing in other cases. A `Default` appearing in
    /// the midst of the list of cases does not shadow the cases that follow.
    ///
    /// Some backend languages don't support fallthrough (HLSL due to FXC,
    /// WGSL), and may translate fallthrough cases in the IR by duplicating
    /// code. However, all backend languages do support cases selected by
    /// multiple values, like `case 1: case 2: case 3: { ... }`. This is
    /// represented in the IR as a series of fallthrough cases with empty
    /// bodies, except for the last.
    ///
    /// Naga IR does not have "phi" instructions. If you need to use
    /// values computed in a [`SwitchCase::body`] block after the `Switch`,
    /// store them in a [`LocalVariable`].
    ///
    /// [`value`]: SwitchCase::value
    /// [`body`]: SwitchCase::body
    /// [`Default`]: SwitchValue::Default
    Switch {
        selector: Handle<Expression>,
        cases: Vec<SwitchCase>,
    },

    /// Executes a block repeatedly.
    ///
    /// Each iteration of the loop executes the `body` block, followed by the
    /// `continuing` block.
    ///
    /// Executing a [`Break`], [`Return`] or [`Kill`] statement exits the loop.
    ///
    /// A [`Continue`] statement in `body` jumps to the `continuing` block. The
    /// `continuing` block is meant to be used to represent structures like the
    /// third expression of a C-style `for` loop head, to which `continue`
    /// statements in the loop's body jump.
    ///
    /// The `continuing` block and its substatements must not contain `Return`
    /// or `Kill` statements, or any `Break` or `Continue` statements targeting
    /// this loop. (It may have `Break` and `Continue` statements targeting
    /// loops or switches nested within the `continuing` block.) Expressions
    /// emitted in `body` are in scope in `continuing`.
    ///
    /// If present, `break_if` is an expression which is evaluated after the
    /// continuing block. Expressions emitted in `body` or `continuing` are
    /// considered to be in scope. If the expression's value is true, control
    /// continues after the `Loop` statement, rather than branching back to the
    /// top of body as usual. The `break_if` expression corresponds to a "break
    /// if" statement in WGSL, or a loop whose back edge is an
    /// `OpBranchConditional` instruction in SPIR-V.
    ///
    /// Naga IR does not have "phi" instructions. If you need to use
    /// values computed in a `body` or `continuing` block after the
    /// `Loop`, store them in a [`LocalVariable`].
    ///
    /// [`Break`]: Statement::Break
    /// [`Continue`]: Statement::Continue
    /// [`Kill`]: Statement::Kill
    /// [`Return`]: Statement::Return
    /// [`break if`]: Self::Loop::break_if
    Loop {
        body: Block,
        continuing: Block,
        break_if: Option<Handle<Expression>>,
    },

    /// Exits the innermost enclosing [`Loop`] or [`Switch`].
    ///
    /// A `Break` statement may only appear within a [`Loop`] or [`Switch`]
    /// statement. It may not break out of a [`Loop`] from within the loop's
    /// `continuing` block.
    ///
    /// [`Loop`]: Statement::Loop
    /// [`Switch`]: Statement::Switch
    Break,

    /// Skips to the `continuing` block of the innermost enclosing [`Loop`].
    ///
    /// A `Continue` statement may only appear within the `body` block of the
    /// innermost enclosing [`Loop`] statement. It must not appear within that
    /// loop's `continuing` block.
    ///
    /// [`Loop`]: Statement::Loop
    Continue,

    /// Returns from the function (possibly with a value).
    ///
    /// `Return` statements are forbidden within the `continuing` block of a
    /// [`Loop`] statement.
    ///
    /// [`Loop`]: Statement::Loop
    Return { value: Option<Handle<Expression>> },

    /// Aborts the current shader execution.
    ///
    /// `Kill` statements are forbidden within the `continuing` block of a
    /// [`Loop`] statement.
    ///
    /// [`Loop`]: Statement::Loop
    Kill,

    /// Synchronize invocations within the work group.
    /// The `Barrier` flags control which memory accesses should be synchronized.
    /// If empty, this becomes purely an execution barrier.
    Barrier(Barrier),
    /// Stores a value at an address.
    ///
    /// For [`TypeInner::Atomic`] type behind the pointer, the value
    /// has to be a corresponding scalar.
    /// For other types behind the `pointer<T>`, the value is `T`.
    ///
    /// This statement is a barrier for any operations on the
    /// `Expression::LocalVariable` or `Expression::GlobalVariable`
    /// that is the destination of an access chain, started
    /// from the `pointer`.
    Store {
        pointer: Handle<Expression>,
        value: Handle<Expression>,
    },
    /// Stores a texel value to an image.
    ///
    /// The `image`, `coordinate`, and `array_index` fields have the same
    /// meanings as the corresponding operands of an [`ImageLoad`] expression;
    /// see that documentation for details. Storing into multisampled images or
    /// images with mipmaps is not supported, so there are no `level` or
    /// `sample` operands.
    ///
    /// This statement is a barrier for any operations on the corresponding
    /// [`Expression::GlobalVariable`] for this image.
    ///
    /// [`ImageLoad`]: Expression::ImageLoad
    ImageStore {
        image: Handle<Expression>,
        coordinate: Handle<Expression>,
        array_index: Option<Handle<Expression>>,
        value: Handle<Expression>,
    },
    /// Atomic function.
    Atomic {
        /// Pointer to an atomic value.
        ///
        /// This must be a [`Pointer`] to an [`Atomic`] value. The atomic's
        /// scalar type may be [`I32`] or [`U32`].
        ///
        /// If [`SHADER_INT64_ATOMIC_MIN_MAX`] or [`SHADER_INT64_ATOMIC_ALL_OPS`] are
        /// enabled, this may also be [`I64`] or [`U64`].
        ///
        /// If [`SHADER_FLOAT32_ATOMIC`] is enabled, this may be [`F32`].
        ///
        /// [`Pointer`]: TypeInner::Pointer
        /// [`Atomic`]: TypeInner::Atomic
        /// [`I32`]: Scalar::I32
        /// [`U32`]: Scalar::U32
        /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
        /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
        /// [`SHADER_FLOAT32_ATOMIC`]: crate::valid::Capabilities::SHADER_FLOAT32_ATOMIC
        /// [`I64`]: Scalar::I64
        /// [`U64`]: Scalar::U64
        /// [`F32`]: Scalar::F32
        pointer: Handle<Expression>,

        /// Function to run on the atomic value.
        ///
        /// If [`pointer`] refers to a 64-bit atomic value, then:
        ///
        /// - The [`SHADER_INT64_ATOMIC_ALL_OPS`] capability allows any [`AtomicFunction`]
        ///   value here.
        ///
        /// - The [`SHADER_INT64_ATOMIC_MIN_MAX`] capability allows
        ///   [`AtomicFunction::Min`] and [`AtomicFunction::Max`]
        ///   in the [`Storage`] address space here.
        ///
        /// - If neither of those capabilities are present, then 64-bit scalar
        ///   atomics are not allowed.
        ///
        /// If [`pointer`] refers to a 32-bit floating-point atomic value, then:
        ///
        /// - The [`SHADER_FLOAT32_ATOMIC`] capability allows [`AtomicFunction::Add`],
        ///   [`AtomicFunction::Subtract`], and [`AtomicFunction::Exchange { compare: None }`]
        ///   in the [`Storage`] address space here.
        ///
        /// [`AtomicFunction::Exchange { compare: None }`]: AtomicFunction::Exchange
        /// [`pointer`]: Statement::Atomic::pointer
        /// [`Storage`]: AddressSpace::Storage
        /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
        /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
        /// [`SHADER_FLOAT32_ATOMIC`]: crate::valid::Capabilities::SHADER_FLOAT32_ATOMIC
        fun: AtomicFunction,

        /// Value to use in the function.
        ///
        /// This must be a scalar of the same type as [`pointer`]'s atomic's scalar type.
        ///
        /// [`pointer`]: Statement::Atomic::pointer
        value: Handle<Expression>,

        /// [`AtomicResult`] expression representing this function's result.
        ///
        /// If [`fun`] is [`Exchange { compare: None }`], this must be `Some`,
        /// as otherwise that operation would be equivalent to a simple [`Store`]
        /// to the atomic.
        ///
        /// Otherwise, this may be `None` if the return value of the operation is not needed.
        ///
        /// If `pointer` refers to a 64-bit atomic value, [`SHADER_INT64_ATOMIC_MIN_MAX`]
        /// is enabled, and [`SHADER_INT64_ATOMIC_ALL_OPS`] is not, this must be `None`.
        ///
        /// [`AtomicResult`]: crate::Expression::AtomicResult
        /// [`fun`]: Statement::Atomic::fun
        /// [`Store`]: Statement::Store
        /// [`Exchange { compare: None }`]: AtomicFunction::Exchange
        /// [`SHADER_INT64_ATOMIC_MIN_MAX`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_MIN_MAX
        /// [`SHADER_INT64_ATOMIC_ALL_OPS`]: crate::valid::Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
        result: Option<Handle<Expression>>,
    },
    /// Performs an atomic operation on a texel value of an image.
    ///
    /// Doing atomics on images with mipmaps is not supported, so there is no
    /// `level` operand.
    ImageAtomic {
        /// The image to perform an atomic operation on. This must have type
        /// [`Image`]. (This will necessarily be a [`GlobalVariable`] or
        /// [`FunctionArgument`] expression, since no other expressions are
        /// allowed to have that type.)
        ///
        /// [`Image`]: TypeInner::Image
        /// [`GlobalVariable`]: Expression::GlobalVariable
        /// [`FunctionArgument`]: Expression::FunctionArgument
        image: Handle<Expression>,

        /// The coordinate of the texel we wish to load. This must be a scalar
        /// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
        /// vector for [`D3`] images. (Array indices, sample indices, and
        /// explicit level-of-detail values are supplied separately.) Its
        /// component type must be [`Sint`].
        ///
        /// [`D1`]: ImageDimension::D1
        /// [`D2`]: ImageDimension::D2
        /// [`D3`]: ImageDimension::D3
        /// [`Bi`]: VectorSize::Bi
        /// [`Tri`]: VectorSize::Tri
        /// [`Sint`]: ScalarKind::Sint
        coordinate: Handle<Expression>,

        /// The index into an arrayed image. If the [`arrayed`] flag in
        /// `image`'s type is `true`, then this must be `Some(expr)`, where
        /// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
        ///
        /// [`arrayed`]: TypeInner::Image::arrayed
        /// [`Sint`]: ScalarKind::Sint
        array_index: Option<Handle<Expression>>,

        /// The kind of atomic operation to perform on the texel.
        fun: AtomicFunction,

        /// The value with which to perform the atomic operation.
        value: Handle<Expression>,
    },
    /// Load uniformly from a uniform pointer in the workgroup address space.
    ///
    /// Corresponds to the [`workgroupUniformLoad`](https://www.w3.org/TR/WGSL/#workgroupUniformLoad-builtin)
    /// built-in function of wgsl, and has the same barrier semantics
    WorkGroupUniformLoad {
        /// This must be of type [`Pointer`] in the [`WorkGroup`] address space
        ///
        /// [`Pointer`]: TypeInner::Pointer
        /// [`WorkGroup`]: AddressSpace::WorkGroup
        pointer: Handle<Expression>,
        /// The [`WorkGroupUniformLoadResult`] expression representing this load's result.
        ///
        /// [`WorkGroupUniformLoadResult`]: Expression::WorkGroupUniformLoadResult
        result: Handle<Expression>,
    },
    /// Calls a function.
    ///
    /// If the `result` is `Some`, the corresponding expression has to be
    /// `Expression::CallResult`, and this statement serves as a barrier for any
    /// operations on that expression.
    Call {
        function: Handle<Function>,
        arguments: Vec<Handle<Expression>>,
        result: Option<Handle<Expression>>,
    },
    RayQuery {
        /// The [`RayQuery`] object this statement operates on.
        ///
        /// [`RayQuery`]: TypeInner::RayQuery
        query: Handle<Expression>,

        /// The specific operation we're performing on `query`.
        fun: RayQueryFunction,
    },
    /// Calculate a bitmask using a boolean from each active thread in the subgroup
    SubgroupBallot {
        /// The [`SubgroupBallotResult`] expression representing this load's result.
        ///
        /// [`SubgroupBallotResult`]: Expression::SubgroupBallotResult
        result: Handle<Expression>,
        /// The value from this thread to store in the ballot
        predicate: Option<Handle<Expression>>,
    },
    /// Gather a value from another active thread in the subgroup
    SubgroupGather {
        /// Specifies which thread to gather from
        mode: GatherMode,
        /// The value to broadcast over
        argument: Handle<Expression>,
        /// The [`SubgroupOperationResult`] expression representing this load's result.
        ///
        /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
        result: Handle<Expression>,
    },
    /// Compute a collective operation across all active threads in the subgroup
    SubgroupCollectiveOperation {
        /// What operation to compute
        op: SubgroupOperation,
        /// How to combine the results
        collective_op: CollectiveOperation,
        /// The value to compute over
        argument: Handle<Expression>,
        /// The [`SubgroupOperationResult`] expression representing this load's result.
        ///
        /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
        result: Handle<Expression>,
    },
}

/// A function argument.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct FunctionArgument {
    /// Name of the argument, if any.
    pub name: Option<String>,
    /// Type of the argument.
    pub ty: Handle<Type>,
    /// For entry points, an argument has to have a binding
    /// unless it's a structure.
    pub binding: Option<Binding>,
}

/// A function result.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct FunctionResult {
    /// Type of the result.
    pub ty: Handle<Type>,
    /// For entry points, the result has to have a binding
    /// unless it's a structure.
    pub binding: Option<Binding>,
}

/// A function defined in the module.
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Function {
    /// Name of the function, if any.
    pub name: Option<String>,
    /// Information about function argument.
    pub arguments: Vec<FunctionArgument>,
    /// The result of this function, if any.
    pub result: Option<FunctionResult>,
    /// Local variables defined and used in the function.
    pub local_variables: Arena<LocalVariable>,
    /// Expressions used inside this function.
    ///
    /// If an [`Expression`] is in this arena, then its subexpressions are in this
    /// arena too. In other words, every `Handle<Expression>` in this arena
    /// refers to an [`Expression`] in this arena too. The only way this arena
    /// can refer to [`Module::global_expressions`] is indirectly, via
    /// [`Constant`] and [`Override`] expressions, which hold handles for their
    /// respective types.
    ///
    /// An [`Expression`] must occur before all other [`Expression`]s that use
    /// its value.
    ///
    /// [`Constant`]: Expression::Constant
    /// [`Override`]: Expression::Override
    pub expressions: Arena<Expression>,
    /// Map of expressions that have associated variable names
    pub named_expressions: NamedExpressions,
    /// Block of instructions comprising the body of the function.
    pub body: Block,
    /// The leaf of all diagnostic filter rules tree (stored in [`Module::diagnostic_filters`])
    /// parsed on this function.
    ///
    /// In WGSL, this corresponds to `@diagnostic(…)` attributes.
    ///
    /// See [`DiagnosticFilterNode`] for details on how the tree is represented and used in
    /// validation.
    pub diagnostic_filter_leaf: Option<Handle<DiagnosticFilterNode>>,
}

/// The main function for a pipeline stage.
///
/// An [`EntryPoint`] is a [`Function`] that serves as the main function for a
/// graphics or compute pipeline stage. For example, an `EntryPoint` whose
/// [`stage`] is [`ShaderStage::Vertex`] can serve as a graphics pipeline's
/// vertex shader.
///
/// Since an entry point is called directly by the graphics or compute pipeline,
/// not by other WGSL functions, you must specify what the pipeline should pass
/// as the entry point's arguments, and what values it will return. For example,
/// a vertex shader needs a vertex's attributes as its arguments, but if it's
/// used for instanced draw calls, it will also want to know the instance id.
/// The vertex shader's return value will usually include an output vertex
/// position, and possibly other attributes to be interpolated and passed along
/// to a fragment shader.
///
/// To specify this, the arguments and result of an `EntryPoint`'s [`function`]
/// must each have a [`Binding`], or be structs whose members all have
/// `Binding`s. This associates every value passed to or returned from the entry
/// point with either a [`BuiltIn`] or a [`Location`]:
///
/// -   A [`BuiltIn`] has special semantics, usually specific to its pipeline
///     stage. For example, the result of a vertex shader can include a
///     [`BuiltIn::Position`] value, which determines the position of a vertex
///     of a rendered primitive. Or, a compute shader might take an argument
///     whose binding is [`BuiltIn::WorkGroupSize`], through which the compute
///     pipeline would pass the number of invocations in your workgroup.
///
/// -   A [`Location`] indicates user-defined IO to be passed from one pipeline
///     stage to the next. For example, a vertex shader might also produce a
///     `uv` texture location as a user-defined IO value.
///
/// In other words, the pipeline stage's input and output interface are
/// determined by the bindings of the arguments and result of the `EntryPoint`'s
/// [`function`].
///
/// [`Function`]: crate::Function
/// [`Location`]: Binding::Location
/// [`function`]: EntryPoint::function
/// [`stage`]: EntryPoint::stage
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct EntryPoint {
    /// Name of this entry point, visible externally.
    ///
    /// Entry point names for a given `stage` must be distinct within a module.
    pub name: String,
    /// Shader stage.
    pub stage: ShaderStage,
    /// Early depth test for fragment stages.
    pub early_depth_test: Option<EarlyDepthTest>,
    /// Workgroup size for compute stages
    pub workgroup_size: [u32; 3],
    /// Override expressions for workgroup size in the global_expressions arena
    pub workgroup_size_overrides: Option<[Option<Handle<Expression>>; 3]>,
    /// The entrance function.
    pub function: Function,
}

/// Return types predeclared for the frexp, modf, and atomicCompareExchangeWeak built-in functions.
///
/// These cannot be spelled in WGSL source.
///
/// Stored in [`SpecialTypes::predeclared_types`] and created by [`Module::generate_predeclared_type`].
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum PredeclaredType {
    AtomicCompareExchangeWeakResult(Scalar),
    ModfResult {
        size: Option<VectorSize>,
        scalar: Scalar,
    },
    FrexpResult {
        size: Option<VectorSize>,
        scalar: Scalar,
    },
}

/// Set of special types that can be optionally generated by the frontends.
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct SpecialTypes {
    /// Type for `RayDesc`.
    ///
    /// Call [`Module::generate_ray_desc_type`] to populate this if
    /// needed and return the handle.
    pub ray_desc: Option<Handle<Type>>,

    /// Type for `RayIntersection`.
    ///
    /// Call [`Module::generate_ray_intersection_type`] to populate
    /// this if needed and return the handle.
    pub ray_intersection: Option<Handle<Type>>,

    /// Types for predeclared wgsl types instantiated on demand.
    ///
    /// Call [`Module::generate_predeclared_type`] to populate this if
    /// needed and return the handle.
    pub predeclared_types: FastIndexMap<PredeclaredType, Handle<Type>>,
}

bitflags::bitflags! {
    /// Ray flags used when casting rays.
    /// Matching vulkan constants can be found in
    /// https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/ray_common/ray_flags_section.txt
    #[cfg_attr(feature = "serialize", derive(Serialize))]
    #[cfg_attr(feature = "deserialize", derive(Deserialize))]
    #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
    #[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
    pub struct RayFlag: u32 {
        /// Force all intersections to be treated as opaque.
        const FORCE_OPAQUE = 0x1;
        /// Force all intersections to be treated as non-opaque.
        const FORCE_NO_OPAQUE = 0x2;
        /// Stop traversal after the first hit.
        const TERMINATE_ON_FIRST_HIT = 0x4;
        /// Don't execute the closest hit shader.
        const SKIP_CLOSEST_HIT_SHADER = 0x8;
        /// Cull back facing geometry.
        const CULL_BACK_FACING = 0x10;
        /// Cull front facing geometry.
        const CULL_FRONT_FACING = 0x20;
        /// Cull opaque geometry.
        const CULL_OPAQUE = 0x40;
        /// Cull non-opaque geometry.
        const CULL_NO_OPAQUE = 0x80;
        /// Skip triangular geometry.
        const SKIP_TRIANGLES = 0x100;
        /// Skip axis-aligned bounding boxes.
        const SKIP_AABBS = 0x200;
    }
}

/// Type of a ray query intersection.
/// Matching vulkan constants can be found in
/// <https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_ray_query.asciidoc>
/// but the actual values are different for candidate intersections.
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum RayQueryIntersection {
    /// No intersection found.
    /// Matches `RayQueryCommittedIntersectionNoneKHR`.
    #[default]
    None = 0,
    /// Intersecting with triangles.
    /// Matches `RayQueryCommittedIntersectionTriangleKHR` and `RayQueryCandidateIntersectionTriangleKHR`.
    Triangle = 1,
    /// Intersecting with generated primitives.
    /// Matches `RayQueryCommittedIntersectionGeneratedKHR`.
    Generated = 2,
    /// Intersecting with Axis Aligned Bounding Boxes.
    /// Matches `RayQueryCandidateIntersectionAABBKHR`.
    Aabb = 3,
}

/// Shader module.
///
/// A module is a set of constants, global variables and functions, as well as
/// the types required to define them.
///
/// Some functions are marked as entry points, to be used in a certain shader stage.
///
/// To create a new module, use the `Default` implementation.
/// Alternatively, you can load an existing shader using one of the [available front ends][front].
///
/// When finished, you can export modules using one of the [available backends][back].
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Module {
    /// Arena for the types defined in this module.
    pub types: UniqueArena<Type>,
    /// Dictionary of special type handles.
    pub special_types: SpecialTypes,
    /// Arena for the constants defined in this module.
    pub constants: Arena<Constant>,
    /// Arena for the pipeline-overridable constants defined in this module.
    pub overrides: Arena<Override>,
    /// Arena for the global variables defined in this module.
    pub global_variables: Arena<GlobalVariable>,
    /// [Constant expressions] and [override expressions] used by this module.
    ///
    /// If an expression is in this arena, then its subexpressions are in this
    /// arena too. In other words, every `Handle<Expression>` in this arena
    /// refers to an [`Expression`] in this arena too.
    ///
    /// Each `Expression` must occur in the arena before any
    /// `Expression` that uses its value.
    ///
    /// [Constant expressions]: index.html#constant-expressions
    /// [override expressions]: index.html#override-expressions
    pub global_expressions: Arena<Expression>,
    /// Arena for the functions defined in this module.
    ///
    /// Each function must appear in this arena strictly before all its callers.
    /// Recursion is not supported.
    pub functions: Arena<Function>,
    /// Entry points.
    pub entry_points: Vec<EntryPoint>,
    /// Arena for all diagnostic filter rules parsed in this module, including those in functions
    /// and statements.
    ///
    /// This arena contains elements of a _tree_ of diagnostic filter rules. When nodes are built
    /// by a front-end, they refer to a parent scope
    pub diagnostic_filters: Arena<DiagnosticFilterNode>,
    /// The leaf of all diagnostic filter rules tree parsed from directives in this module.
    ///
    /// In WGSL, this corresponds to `diagnostic(…);` directives.
    ///
    /// See [`DiagnosticFilterNode`] for details on how the tree is represented and used in
    /// validation.
    pub diagnostic_filter_leaf: Option<Handle<DiagnosticFilterNode>>,
}