1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
use std::ops::Range;
use crate::{
api::{
blas::BlasBuildEntry,
tlas::{TlasBuildEntry, TlasPackage},
},
*,
};
/// Encodes a series of GPU operations.
///
/// A command encoder can record [`RenderPass`]es, [`ComputePass`]es,
/// and transfer operations between driver-managed resources like [`Buffer`]s and [`Texture`]s.
///
/// When finished recording, call [`CommandEncoder::finish`] to obtain a [`CommandBuffer`] which may
/// be submitted for execution.
///
/// Corresponds to [WebGPU `GPUCommandEncoder`](https://gpuweb.github.io/gpuweb/#command-encoder).
#[derive(Debug)]
pub struct CommandEncoder {
pub(crate) inner: dispatch::DispatchCommandEncoder,
}
#[cfg(send_sync)]
static_assertions::assert_impl_all!(CommandEncoder: Send, Sync);
crate::cmp::impl_eq_ord_hash_proxy!(CommandEncoder => .inner);
/// Describes a [`CommandEncoder`].
///
/// For use with [`Device::create_command_encoder`].
///
/// Corresponds to [WebGPU `GPUCommandEncoderDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpucommandencoderdescriptor).
pub type CommandEncoderDescriptor<'a> = wgt::CommandEncoderDescriptor<Label<'a>>;
static_assertions::assert_impl_all!(CommandEncoderDescriptor<'_>: Send, Sync);
pub use wgt::TexelCopyBufferInfo as TexelCopyBufferInfoBase;
/// View of a buffer which can be used to copy to/from a texture.
///
/// Corresponds to [WebGPU `GPUTexelCopyBufferInfo`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopybuffer).
pub type TexelCopyBufferInfo<'a> = TexelCopyBufferInfoBase<&'a Buffer>;
#[cfg(send_sync)]
static_assertions::assert_impl_all!(TexelCopyBufferInfo<'_>: Send, Sync);
pub use wgt::TexelCopyTextureInfo as TexelCopyTextureInfoBase;
/// View of a texture which can be used to copy to/from a buffer/texture.
///
/// Corresponds to [WebGPU `GPUTexelCopyTextureInfo`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopytexture).
pub type TexelCopyTextureInfo<'a> = TexelCopyTextureInfoBase<&'a Texture>;
#[cfg(send_sync)]
static_assertions::assert_impl_all!(TexelCopyTextureInfo<'_>: Send, Sync);
impl CommandEncoder {
/// Finishes recording and returns a [`CommandBuffer`] that can be submitted for execution.
pub fn finish(mut self) -> CommandBuffer {
let buffer = self.inner.finish();
CommandBuffer {
inner: Some(buffer),
}
}
/// Begins recording of a render pass.
///
/// This function returns a [`RenderPass`] object which records a single render pass.
///
/// As long as the returned [`RenderPass`] has not ended,
/// any mutating operation on this command encoder causes an error and invalidates it.
/// Note that the `'encoder` lifetime relationship protects against this,
/// but it is possible to opt out of it by calling [`RenderPass::forget_lifetime`].
/// This can be useful for runtime handling of the encoder->pass
/// dependency e.g. when pass and encoder are stored in the same data structure.
pub fn begin_render_pass<'encoder>(
&'encoder mut self,
desc: &RenderPassDescriptor<'_>,
) -> RenderPass<'encoder> {
let rpass = self.inner.begin_render_pass(desc);
RenderPass {
inner: rpass,
_encoder_guard: api::PhantomDrop::default(),
}
}
/// Begins recording of a compute pass.
///
/// This function returns a [`ComputePass`] object which records a single compute pass.
///
/// As long as the returned [`ComputePass`] has not ended,
/// any mutating operation on this command encoder causes an error and invalidates it.
/// Note that the `'encoder` lifetime relationship protects against this,
/// but it is possible to opt out of it by calling [`ComputePass::forget_lifetime`].
/// This can be useful for runtime handling of the encoder->pass
/// dependency e.g. when pass and encoder are stored in the same data structure.
pub fn begin_compute_pass<'encoder>(
&'encoder mut self,
desc: &ComputePassDescriptor<'_>,
) -> ComputePass<'encoder> {
let cpass = self.inner.begin_compute_pass(desc);
ComputePass {
inner: cpass,
_encoder_guard: api::PhantomDrop::default(),
}
}
/// Copy data from one buffer to another.
///
/// # Panics
///
/// - Buffer offsets or copy size not a multiple of [`COPY_BUFFER_ALIGNMENT`].
/// - Copy would overrun buffer.
/// - Copy within the same buffer.
pub fn copy_buffer_to_buffer(
&mut self,
source: &Buffer,
source_offset: BufferAddress,
destination: &Buffer,
destination_offset: BufferAddress,
copy_size: BufferAddress,
) {
self.inner.copy_buffer_to_buffer(
&source.inner,
source_offset,
&destination.inner,
destination_offset,
copy_size,
);
}
/// Copy data from a buffer to a texture.
pub fn copy_buffer_to_texture(
&mut self,
source: TexelCopyBufferInfo<'_>,
destination: TexelCopyTextureInfo<'_>,
copy_size: Extent3d,
) {
self.inner
.copy_buffer_to_texture(source, destination, copy_size);
}
/// Copy data from a texture to a buffer.
pub fn copy_texture_to_buffer(
&mut self,
source: TexelCopyTextureInfo<'_>,
destination: TexelCopyBufferInfo<'_>,
copy_size: Extent3d,
) {
self.inner
.copy_texture_to_buffer(source, destination, copy_size);
}
/// Copy data from one texture to another.
///
/// # Panics
///
/// - Textures are not the same type
/// - If a depth texture, or a multisampled texture, the entire texture must be copied
/// - Copy would overrun either texture
pub fn copy_texture_to_texture(
&mut self,
source: TexelCopyTextureInfo<'_>,
destination: TexelCopyTextureInfo<'_>,
copy_size: Extent3d,
) {
self.inner
.copy_texture_to_texture(source, destination, copy_size);
}
/// Clears texture to zero.
///
/// Note that unlike with clear_buffer, `COPY_DST` usage is not required.
///
/// # Implementation notes
///
/// - implemented either via buffer copies and render/depth target clear, path depends on texture usages
/// - behaves like texture zero init, but is performed immediately (clearing is *not* delayed via marking it as uninitialized)
///
/// # Panics
///
/// - `CLEAR_TEXTURE` extension not enabled
/// - Range is out of bounds
pub fn clear_texture(&mut self, texture: &Texture, subresource_range: &ImageSubresourceRange) {
self.inner.clear_texture(&texture.inner, subresource_range);
}
/// Clears buffer to zero.
///
/// # Panics
///
/// - Buffer does not have `COPY_DST` usage.
/// - Range is out of bounds
pub fn clear_buffer(
&mut self,
buffer: &Buffer,
offset: BufferAddress,
size: Option<BufferAddress>,
) {
self.inner.clear_buffer(&buffer.inner, offset, size);
}
/// Inserts debug marker.
pub fn insert_debug_marker(&mut self, label: &str) {
self.inner.insert_debug_marker(label);
}
/// Start record commands and group it into debug marker group.
pub fn push_debug_group(&mut self, label: &str) {
self.inner.push_debug_group(label);
}
/// Stops command recording and creates debug group.
pub fn pop_debug_group(&mut self) {
self.inner.pop_debug_group();
}
/// Resolves a query set, writing the results into the supplied destination buffer.
///
/// Occlusion and timestamp queries are 8 bytes each (see [`crate::QUERY_SIZE`]). For pipeline statistics queries,
/// see [`PipelineStatisticsTypes`] for more information.
pub fn resolve_query_set(
&mut self,
query_set: &QuerySet,
query_range: Range<u32>,
destination: &Buffer,
destination_offset: BufferAddress,
) {
self.inner.resolve_query_set(
&query_set.inner,
query_range.start,
query_range.end - query_range.start,
&destination.inner,
destination_offset,
);
}
/// Returns the inner hal CommandEncoder using a callback. The hal command encoder will be `None` if the
/// backend type argument does not match with this wgpu CommandEncoder
///
/// This method will start the wgpu_core level command recording.
///
/// # Safety
///
/// - The raw handle obtained from the hal CommandEncoder must not be manually destroyed
#[cfg(wgpu_core)]
pub unsafe fn as_hal_mut<
A: wgc::hal_api::HalApi,
F: FnOnce(Option<&mut A::CommandEncoder>) -> R,
R,
>(
&mut self,
hal_command_encoder_callback: F,
) -> R {
if let Some(encoder) = self.inner.as_core_mut_opt() {
unsafe {
encoder
.context
.command_encoder_as_hal_mut::<A, F, R>(encoder, hal_command_encoder_callback)
}
} else {
hal_command_encoder_callback(None)
}
}
}
/// [`Features::TIMESTAMP_QUERY_INSIDE_ENCODERS`] must be enabled on the device in order to call these functions.
impl CommandEncoder {
/// Issue a timestamp command at this point in the queue.
/// The timestamp will be written to the specified query set, at the specified index.
///
/// Must be multiplied by [`Queue::get_timestamp_period`] to get
/// the value in nanoseconds. Absolute values have no meaning,
/// but timestamps can be subtracted to get the time it takes
/// for a string of operations to complete.
///
/// Attention: Since commands within a command recorder may be reordered,
/// there is no strict guarantee that timestamps are taken after all commands
/// recorded so far and all before all commands recorded after.
/// This may depend both on the backend and the driver.
pub fn write_timestamp(&mut self, query_set: &QuerySet, query_index: u32) {
self.inner.write_timestamp(&query_set.inner, query_index);
}
}
/// [`Features::EXPERIMENTAL_RAY_TRACING_ACCELERATION_STRUCTURE`] must be enabled on the device in order to call these functions.
impl CommandEncoder {
/// Build bottom and top level acceleration structures.
///
/// Builds the BLASes then the TLASes, but does ***not*** build the BLASes into the TLASes,
/// that must be done by setting a TLAS instance in the TLAS package to one that contains the BLAS (and with an appropriate transform)
///
/// # Validation
///
/// - blas: Iterator of bottom level acceleration structure entries to build.
/// For each entry, the provided size descriptor must be strictly smaller or equal to the descriptor given at BLAS creation, this means:
/// - Less or equal number of geometries
/// - Same kind of geometry (with index buffer or without) (same vertex/index format)
/// - Same flags
/// - Less or equal number of vertices
/// - Less or equal number of indices (if applicable)
/// - tlas: iterator of top level acceleration structure packages to build
/// For each entry:
/// - Each BLAS in each TLAS instance must have been being built in the current call or in a previous call to `build_acceleration_structures` or `build_acceleration_structures_unsafe_tlas`
/// - The number of TLAS instances must be less than or equal to the max number of tlas instances when creating (if creating a package with `TlasPackage::new()` this is already satisfied)
///
/// If the device the command encoder is created from does not have [Features::EXPERIMENTAL_RAY_TRACING_ACCELERATION_STRUCTURE] enabled then a validation error is generated
///
/// A bottom level acceleration structure may be build and used as a reference in a top level acceleration structure in the same invocation of this function.
///
/// # Bind group usage
///
/// When a top level acceleration structure is used in a bind group, some validation takes place:
/// - The top level acceleration structure is valid and has been built.
/// - All the bottom level acceleration structures referenced by the top level acceleration structure are valid and have been built prior,
/// or at same time as the containing top level acceleration structure.
///
/// [Features::EXPERIMENTAL_RAY_TRACING_ACCELERATION_STRUCTURE]: wgt::Features::EXPERIMENTAL_RAY_TRACING_ACCELERATION_STRUCTURE
pub fn build_acceleration_structures<'a>(
&mut self,
blas: impl IntoIterator<Item = &'a BlasBuildEntry<'a>>,
tlas: impl IntoIterator<Item = &'a TlasPackage>,
) {
self.inner
.build_acceleration_structures(&mut blas.into_iter(), &mut tlas.into_iter());
}
/// Build bottom and top level acceleration structures.
/// See [`CommandEncoder::build_acceleration_structures`] for the safe version and more details. All validation in [`CommandEncoder::build_acceleration_structures`] except that
/// listed under tlas applies here as well.
///
/// # Safety
///
/// - The contents of the raw instance buffer must be valid for the underling api.
/// - All bottom level acceleration structures, referenced in the raw instance buffer must be valid and built,
/// when the corresponding top level acceleration structure is built. (builds may happen in the same invocation of this function).
/// - At the time when the top level acceleration structure is used in a bind group, all associated bottom level acceleration structures must be valid,
/// and built (no later than the time when the top level acceleration structure was built).
pub unsafe fn build_acceleration_structures_unsafe_tlas<'a>(
&mut self,
blas: impl IntoIterator<Item = &'a BlasBuildEntry<'a>>,
tlas: impl IntoIterator<Item = &'a TlasBuildEntry<'a>>,
) {
self.inner.build_acceleration_structures_unsafe_tlas(
&mut blas.into_iter(),
&mut tlas.into_iter(),
);
}
}